
MiG.4: A Curated Dataset of Library Migrations in Java and
Python

Matheus Barbosa∗
Pedro Baptista∗

matheus.grandinetti@dcc.ufmg.br
baptistapedro@dcc.ufmg.br

Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

João Eduardo Montandon
joao@dcc.ufmg.br

Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Abstract
Software library and framework migrations are common, yet chal-
lenging and time-consuming tasks in software evolution. The de-
velopment and rigorous evaluation of automated migration tools,
particularly those based on Large Language Models (LLMs), re-
quire high-quality, real-world datasets that are free from noise.
We propose MiG.4, a manually curated dataset of real-world code
migrations performed between four popular Java and Python li-
braries. Currently, the dataset comprises 800 instances of isolated,
developer-performed migrations, focusing on four highly relevant
scenarios: 𝐽𝑈𝑛𝑖𝑡 ⇔ 𝑇𝑒𝑠𝑡𝑁𝐺 , 𝑀𝑜𝑐𝑘𝑖𝑡𝑜 ⇔ 𝐸𝑎𝑠𝑦𝑀𝑜𝑐𝑘 , 𝑈𝑟𝑙𝑙𝑖𝑏 ⇒
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 , and 𝐵𝑜𝑡𝑜 ⇒ 𝐵𝑜𝑡𝑜3. Each migration record is structured
with eight fields, including the code snippets before and after the
change, and a classification that distinguishes between Simple and
Complex Migrations. Our dataset serves as a solid ground truth,
facilitating future empirical studies and development of novel solu-
tions for automated third-components migration.

Dataset Package. The dataset is publicly available at: https://doi.
org/10.5281/zenodo.17665212

ACM Reference Format:
Matheus Barbosa, Pedro Baptista, and João Eduardo Montandon. 2026.
MiG.4: A Curated Dataset of Library Migrations in Java and Python. In
2026 IEEE/ACM Third International Conference on AI Foundation Models and
Software Engineering (FORGE ’26), April 12–13, 2026, Rio de Janeiro, Brazil.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3793655.3793711

1 Introduction
The raise of third-party libraries and frameworks has changed the
way software is developed [6, 8]. Nowadays, developers extensively
rely on pre-built functionalities provided by these components to
ship software faster and with higher quality [9–11]. For a given
task, developers have at their disposal a wide range of libraries
and frameworks to choose from, each with its own set of features,
including API structure, community guidelines, API documenta-
tion, and licensing terms [7, 8]. While React, Vue, and Angular are

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
FORGE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2477-0/2026/04
https://doi.org/10.1145/3793655.3793711

popular choices for building user interfaces and managing applica-
tions, developers can implement the backend of their server-side
applications using either Flask, Django, or FastAPI.

These components might be changed as the software project
evolves. For example, GitHub’s engineering team upgraded their
codebase from Rails 3.2 to Rails 5.2. The migration process took over
a year, allowing them to fix technical debts and use new features
available in the newer version of the framework.1 Likewise, many
open source software maintainers who opted for Python’s unittest
library to write their test cases decided to migrate their test suite
to pytest, a modern and feature-rich testing library [2, 3].

It turns out that these migrations require a high cognitive load
since developers manually migrate their code to the new library or
framework. Besides demanding expertise in both legacy and tar-
get APIs perform the migration, they must know how to correctly
perform this transformation in the codebase they are working on.
This task is error-prone and may introduce new bugs in the mi-
grated source code. In recent years, Large Language Models (LLMs)
have shown promising capabilities in various code migration tasks,
including updating library versions, and replacing one library for
another [1, 2, 6]. Unfortunately, the dataset used in these studies
present some restrictions, such as a limited number of migration
scenarios, the presence of other changes besides the migration code,
and a lack of variety in the migration scenarios.

Our Proposal. To address this gap, MiG.4 is introduced as a manu-
ally curated dataset of real-world code migrations extracted from
prior work [4]. The dataset comprises 800 isolated and verified
migration instances, each representing an authentic developer-
performed modification. MiG.4 encompasses migrations involving
widely adopted libraries across two major programming ecosys-
tems—Java (EasyMock, Mockito, JUnit, and TestNG) and Python
(Urllib, Requests, Boto, and Boto3).

Beyond its scale, MiG.4 introduces three key innovations that
distinguish it from existing resources:

• Rigorous curation process: all migration instances were
manually inspected, validated, and refined to ensure cor-
rectness and eliminate false positives, resulting in a high-
confidence dataset.

• Cross-language diversity: the dataset integrates migration
scenarios from both Java and Python ecosystems, allowing
comparative studies across languages and runtime environ-
ments.

1https://github.blog/engineering/infrastructure/upgrading-github-from-rails-3-2-
to-5-2/

https://doi.org/10.5281/zenodo.17665212
https://doi.org/10.5281/zenodo.17665212
https://doi.org/10.1145/3793655.3793711
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793655.3793711
https://github.blog/engineering/infrastructure/upgrading-github-from-rails-3-2-to-5-2/
https://github.blog/engineering/infrastructure/upgrading-github-from-rails-3-2-to-5-2/


FORGE ’26, April 12–13, 2026, Rio de Janeiro, Brazil Matheus Barbosa, Pedro Baptista, and João Eduardo Montandon

Figure 1: Overview of the data collection methodology.

• Varied migration types: varied migration types — MiG.4
captures heterogeneous migration patterns, including inter-
library transitions (e.g., Mockito ⇔ EasyMock) and intra-
library version upgrades (e.g., Boto⇒ Boto3), thus reflecting
the full spectrum of migration complexity encountered in
modern software evolution.

Regarding its utility, MiG.4 is designed to serve as a high-quality
benchmark for training and evaluating Large Language Models
(LLMs) and other AI-driven approaches in the context of software
evolution. By providing a clean, "ground truth" source of human-
written migrations, it enables researchers to perform fine-grained
comparative studies and develop more accurate automated refac-
toring tools. Ultimately, MiG.4 acts as a vital auxiliary resource in
software engineering research, helping to bridge the gap between
manual migration efforts and autonomous coding assistants.

Beyond its role in AI research, MiG.4 serves as a valuable asset
for broader software engineering endeavors. It can be used to mine
common refactoring patterns, providing a catalog of real-world
API mapping challenges. Furthermore, the dataset acts as a robust
testbed for static analysis tools to validate automated quick-fixes.
From an educational perspective, MiG.4 offers a curated repository
of practical evolution cases, allowing students and practitioners to
study the complexities of library dependencies and technical debt
management in large-scale projects.

Dataset Availability. The MiG.4 dataset is publicly available at
https://doi.org/10.5281/zenodo.17665212.

2 Data Collection
We developed a four-step data collection pipeline to build the MiG.4
dataset, as illustrated in Figure 1. Each stage of the process is de-
scribed below.

The Original Dataset. Our dataset builds upon an existing collec-
tion of library migration instances, originally compiled by Gu et al.
[4]. The original dataset contains an extensive corpus of 33,667 com-
mits flagged as library migrations in different third-party compo-
nents and programming languages. However, the dataset provides
only commit-level information—e.g., it does not contain the code
snippets or diffs that represent the changes that occurred during the

migration—which limits its utility for fine-grained migration analy-
sis. We propose to improve this dataset by extracting the migrations
effectively performed at source code level.

Scenario Selection. Two authors independently reviewed the
original dataset to identify migration scenarios that is worth im-
proving. For this selection, the authors analyzed the migration
scenarios present in the dataset, and filtered those according to the
following criteria.

• Library popularity: we considered migrations involving
widely adopted and well-established libraries;

• Migration type: we selected migration pairs to ensure both
inter-library transitions and intra-library version upgrades.

• Cross-language support: we included migration scenarios
performed in two programming languages: Java and Python.

Table 1 summarizes the migration pairs selected after this in-
spection. In total, we selected four migration scenarios:𝑇𝑒𝑠𝑡𝑁𝐺 ⇔
𝐽𝑈𝑛𝑖𝑡 and𝑀𝑜𝑐𝑘𝑖𝑡𝑜 ⇔ 𝐸𝑎𝑠𝑦𝑀𝑜𝑐𝑘 for Java, and𝑈𝑟𝑙𝑙𝑖𝑏 ⇒ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

and 𝐵𝑜𝑡𝑜 ⇒ 𝐵𝑜𝑡𝑜3 for Python. Three of these pairs represent
inter-library migrations, while one corresponds to an intra-library
upgrade. Furthermore, we included bi-directional migrations for
two scenarios, represented by the double arrows (⇔). These pairs
contain migration examples performed both forward (A ⇒ B) and
backward (B⇒ A), allowing researchers to study differences in mi-
gration complexity and patterns in both directions. In our view, this
selection provides a balanced yet diverse set of migration scenarios,
similar to those investigated in the literature [1, 3, 5, 6].

Table 1: Selected migration pairs for dataset curation.

Programming Migration Pair Type CommitsLanguage

Java TestNG⇔ JUnit Inter 20
Mockito⇔ EasyMock Inter 10

Python Urllib⇒ Requests Inter 82
Boto⇒ Boto3 Intra 68

https://doi.org/10.5281/zenodo.17665212


MiG.4: A Curated Dataset of Library Migrations in Java and Python FORGE ’26, April 12–13, 2026, Rio de Janeiro, Brazil

Commit Analysis. Once themigration scenarios were selected, we
proceeded to extract the actual source code changes corresponding
to each migration instance. For each commit listed in the origi-
nal dataset corresponding to one of the selected scenarios, two
authors read the commit diff to locate the code segments that ef-
fectively performed the migration between the legacy and target
libraries. The authors selected a code diff as a migration instance if
themodification explicitly included the replacement of API calls, data
structures, or other constructs associated with the libraries involved
in the migration. During this step, the authors isolated each migra-
tion instance from unrelated code changes performed in the same
commit. Finally, commits considered false positives were discarded.

For each scenario, the authors performed the classification until
a limit of 200 migration instances was reached. This threshold
ensured a balanced representation among the selected migration
pairs, resulting in a total of 800 migration instances.

Migration Classification. In this final step, each migration in-
stancewas classified according to its level of complexity. Specifically,
migration instances were categorized as either Simple or Complex
migrations. A simple migration corresponds to cases involving min-
imal syntactic changes, where the overall code structure remains
largely unchanged during migration. For example, a unit test that
replaced a function call from the legacy library with one from the
target library—without modifying its parameters or the surround-
ing code—would be considered a simple migration. In other words,
migration instances were classified as simple if the changes made
are direct and require no other additions or removals to the code
other than the signature change. On the other hand, complex migra-
tions represent larger transformations, where the structural aspect
of the modified code is significantly modified. These show signifi-
cant differences in the libraries that made necessary additions or
removals in the code structure, such as assigning new variables,
calling new functions, or the removal of such aspects.

3 Dataset Structure
Table 2 provides an overview of the MiG.4 dataset. As mentioned
above, the dataset encompasses 800 migration instances, evenly
distributed across four migration scenarios. As we can see, 479
(59.9%) of the migrations were classified as Simple, while 321 (40.1%)
were labeled as Complex. Most migration scenarios exhibit similar
distributions between simple and complex migrations. The Mockito
⇔ EasyMock scenario stands out with a greater number of complex
migrations (108) than simple ones (92).

Table 2: Overview of the MiG.4 dataset.

Migration Scenario # of Migration Instances TotalSimple Complex

TestNG⇔ JUnit 140 60 200
Mockito⇔ EasyMock 92 108 200
Urllib⇒ Requests 129 71 200
Boto⇒ Boto3 118 82 200

Total 479 321 800

Currently, the dataset is organized as a structured collection
of records, stored in CSV format. Each record represents a single,

isolated migration instance, and includes eight fields describing the
migration metadata and the associated code snippets before and
after the migration.

• repo_name: The name of the GitHub repository where the
migration occurred.

• commit_code: The commit hash where the migration was
performed.

• file_name: Name of the file affected by the migration.
• type: The classification of the migration as either Simple or
Complex.

• legacy_lib: The name of the original library or framework
being migrated from.

• target_lib: The name of the target library or framework
being migrated to.

• code_before: The code snippet containing the usage of the
legacy library before the migration.

• code_after: The code snippet containing the usage of the
target library after the migration.

4 Migration Examples
Figure 2 illustrates two migration instances from the MiG.4 dataset.
As previously stated, these migrations were isolated from other
changes to include only the code changed to perform the transition
between legacy and target libraries. We explain each example in
detail below.

4.1 Simple Migration
Figure 2a presents a simple migration on boto ⇒ boto3. This migra-
tion was conducted in 2016 in the Cloud Tools Stacker project.2 The
whole commit contains 51 changes performed in 9 files, totaling
117 lines changed.

As previously stated, a simple migration is characterized by
straightforward changes to the source code, such as replacing a
function call or modifying its parameters, without modifying the
overall code structure. This specific instance is characterized by a
direct one-to-one mapping of changes: the single call to connect
using cloudformation is replaced by a two-step initialization pro-
cess. This new process involves creating a Boto3 session followed
by retrieving the client via the built-in client method. Because the
migration replaces only library-specific initialization elements for
improved clarity and adherence to the current AWS SDK best prac-
tices, as described in the migration commit, this transition was
categorized as a simple migration.

4.2 Complex Migration
Figure 2b demonstrates a complex migration involving the transi-
tion from EasyMock ⇒ Mockito. This migration was conducted in
2013 in the Spring Batch project.3 The whole commit contains 94
changes performed in 78 files, totaling 1,279 lines changed.

Unlike simple migrations—which often consist of one-to-one
function call substitutions—this case shows a fundamental shift in
the testing strategy—moving from EasyMock’s imperative “Record-
Replay”model toMockito’s declarative “Arrange-Act-Assert” model.

2https://github.com/cloudtools/stacker/commit/f7a250072d1d8af6352f49044ec5570ac47378f2
3https://github.com/spring-projects/spring-batch/commit/
7e1e66d677d8cdd9fbf1c9e07e5b307a249d9e05

https://github.com/cloudtools/stacker/commit/f7a250072d1d8af6352f49044ec5570ac47378f2
https://github.com/spring-projects/spring-batch/commit/7e1e66d677d8cdd9fbf1c9e07e5b307a249d9e05
https://github.com/spring-projects/spring-batch/commit/7e1e66d677d8cdd9fbf1c9e07e5b307a249d9e05


FORGE ’26, April 12–13, 2026, Rio de Janeiro, Brazil Matheus Barbosa, Pedro Baptista, and João Eduardo Montandon

(a) A simple migration example from 𝐵𝑜𝑡𝑜 ⇒ 𝐵𝑜𝑡𝑜3.

(b) A complex migration example from 𝐸𝑎𝑠𝑦𝑀𝑜𝑐𝑘 ⇒ 𝑀𝑜𝑐𝑘𝑖𝑡𝑜 .

Figure 2: Examples of simple and complex migrations from the MiG.4 dataset.

To perform this transition, themaintainer removed the state-manage-
ment methods such as replay() and expectLastCall(). Addi-
tionally, the developer reestructured the mock behavior, convert-
ing expect().andReturn() to the when().thenReturn() chain.
These changes represent a modification of the test’s control flow
and state logic, fiting our criteria for complex migrations.

5 Related Work
Library migration involves replacing one library with another in a
software project [4, 6]. Barbosa and Hora [3] analyzed the reasons
for migrating from unittest to pytest in open-source Python projects,
showing that developers take into account new features, easier syn-
tax, and flexibility when deciding to migrate. Alves and Hora [2]
extended this work to provide a curated dataset of unittest to pytest
source code migrations. Islam et al. [6] mapped the changes in-
volving library migration in 311 Python projects, and leveraged a
taxonomy with the strutural changes needed to perform the migra-
tions. Besides changing the functions, developers adopt different
program elements—e.g., use decorators, include exception handling,
etc—when conducting library migrations.

Gu et al. [4] conducted a comparative study about library mi-
gration in three popular ecosystems—Java/Maven, JavaScript/npm,
and Python/PyPI—to understand in which context developers are
more likely to perform library migrations. The authors showed
that different ecosystems share similar motivations to replace one
library with another, such as old library presenting issues, target
library offering new features, etc. Similar to Alves and Hora [2], we
meticulously analyzed and augmented the dataset presented in Gu
et al. [4] to include the source diffs with the migration effectively
performed by the developers, ensuring a more detailed and reliable
representation of migration scenarios. These additions encompass a

wider variety of libraries, frameworks, and programming languages,
facilitating a more robust foundation for automated migration re-
search.

6 Conclusion
In this work, we presented MiG.4, a manually curated dataset of
real-world code migrations involving Java and Python libraries.
At its current state, the dataset contains 800 isolated migration
instances from four relevant migration scenarios, each classified
according to its complexity level. We believe that MiG.4 serves as a
solid dataset to support further research on automated solutions
for library migration tasks at source code level.

Future Work. At short term, we plan to extend the collection of
migration instances with new instances and scenarios. Another im-
portant direction is to improve the characterization of the dataset
by analyzing the types of modifications performed during migra-
tions. With this detailed taxonomy, we can conduct a more precise
evaluation of migration techniques with respect to these patterns.
Finally, we intend to use the dataset in empirical studies to assess
the capabilities of Large Language Models (LLMs) in automating
code migration tasks. Finally, we intend to leverage the dataset
in future empirical studies to evaluate the capabilities of Large
Language Models (LLMs) in assisting code migration tasks.

Acknowledgments
This work was partially supported by INES.IA (National Institute of
Science and Technology for Software Engineering Based on and for
Artificial Intelligence) www.ines.org.br, CNPq grant 408817/2024-0.
It was also supported by grants from CNPq (403304/2025-3) and by
FAPEMIG (APQ-02419-23).

www.ines.org.br


MiG.4: A Curated Dataset of Library Migrations in Java and Python FORGE ’26, April 12–13, 2026, Rio de Janeiro, Brazil

References
[1] Aylton Almeida, Laerte Xavier, and Marco Tulio Valente. 2024. Automatic Library

Migration Using Large Language Models: First Results. In 18th International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–7.

[2] Altino Alves and Andre Hora. 2025. TestMigrationsInPy: A Dataset of Test
Migrations from Unittest to Pytest. In Mining Software Repositories (MSR): Data
and Tools Showcase Track. 1–5.

[3] Livia Barbosa and Andre Hora. 2022. How and Why Developers Migrate Python
Tests. In International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER). 538–548.

[4] Haiqiao Gu, Hao He, and Minghui Zhou. 2023. Self-Admitted Library Migrations
in Java, JavaScript, and Python Packaging Ecosystems: A Comparative Study. In
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). 627–638.

[5] Kaifeng Huang, Bihuan Chen, Linghao Pan, Shuai Wu, and Xin Peng. 2021.
REPFINDER: Finding Replacements for Missing APIs in Library Update. In
IEEE/ACM International Conference on Automated Software Engineering (ASE).
266–278.

[6] Mohayeminul Islam, Ajay Kumar Jha, Ildar Akhmetov, and Sarah Nadi. 2024.
Characterizing Python Library Migrations. In ACM International Conference on
the Foundations of Software Engineering (FSE), Vol. 1. 1–23.

[7] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. 2021. A Systematic
Review of API Evolution Literature. Comput. Surveys 54, 8 (Oct. 2021), 171:1–
171:36.

[8] Maxime Lamothe and Weiyi Shang. 2018. Exploring the Use of Automated API
Migrating Techniques in Practice: An Experience Report on Android. In 15th
International Conference on Mining Software Repositories (MSR). 503–514.

[9] Guilherme Miranda, João Eduardo Montandon, and Marco Tulio Valente. 2022.
TechSpaces: Identifying and Clustering Popular Programming Technologies.
In 16th Brazilian Symposium on Software Components, Architectures, and Reuse
(SBCARS). 60–67.

[10] João Eduardo Montandon, Luciana Lourdes Silva, and Marco Tulio Valente. 2019.
Identifying Experts in Software Libraries and Frameworks Among GitHub Users.
In 16th International Conference on Mining Software Repositories (MSR). 276–287.

[11] João Eduardo Montandon, Cristiano Politowski, Luciana Lourdes Silva,
Marco Tulio Valente, Fabio Petrillo, and Yann Gaël Guéhéneuc. 2021. What
Skills Do IT Companies Look for in New Developers? A Study with Stack Over-
flow Jobs. Information and Software Technology 129 (2021), 1–6.


	Abstract
	1 Introduction
	2 Data Collection
	3 Dataset Structure
	4 Migration Examples
	4.1 Simple Migration
	4.2 Complex Migration

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

