
PromiseAwait: A Dataset of JavaScript Migrations from Promises
to Async/Await

Rafael Araujo Magesty
rafaelmagesty@dcc.ufmg.br

Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

João Eduardo Montandon
joao@dcc.ufmg.br

Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Abstract
The constant evolution of the JavaScript language brings modern
language features that simplify software development, notably the
async/await syntax for asynchronous programming. While these
advancements improve code readability and maintainability, mi-
grating legacy codebases to leverage new constructs remains a
complex and error-prone process. To support research on auto-
mated language migration, we present PromiseAwait, a compre-
hensive dataset of real-world JavaScript migrations from Promises
to async/await syntax. At its current version, the dataset comprises
4,221 migration instances extracted from 1,530 commits across 408
popular open-source projects, identified using a heuristic based on
regular expressions. Each instance includes detailed metadata and
source code before and after the transition. We believe PromiseA-
wait will allow researchers to evaluate large language models for
language migration tasks, providing a baseline for future studies.
ACM Reference Format:
Rafael Araujo Magesty and João Eduardo Montandon. 2026. PromiseAwait:
A Dataset of JavaScript Migrations from Promises to Async/Await. In 2026
IEEE/ACM Third International Conference on AI Foundation Models and Soft-
ware Engineering (FORGE ’26), April 12–13, 2026, Rio de Janeiro, Brazil. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3793655.3793714

1 Introduction
JavaScript has become one of the most popular programming lan-
guages in the world, being frequently recognized as the de-facto
language for many software developers [17, 22, 23]. Originally
designed for client-side web development [7, 13], JavaScript has
evolved significantly over the years, expanding its adoption to other
application domains. Nowadays, software developers use JavaScript
to build both front-end and back-end applications, mobile apps, and
desktop software [5, 9, 13, 17, 20].

To support this diverse range of applications, JavaScript has
been continuously updated with new features and syntax improve-
ments [8]. Just a decade ago, the language started supporting class-
based syntax, modules, arrow functions, and destructing assign-
ments (ES6, 2015), leveraging its modular design. Subsequent yearly
updates added features like simpler constructs for asynchronous
programming (ES7, 2016), new math operators (ES8, 2017), and
array/object syntax to enable destructuring, spread, and rest op-
erations (ES9, 2018). This regular evolution was key to keep the

This work is licensed under a Creative Commons Attribution 4.0 International License.
FORGE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2477-0/2026/04
https://doi.org/10.1145/3793655.3793714

language relevant in the software development landscape, allowing
developers to leverage modern programming paradigms and best
practices [10, 13].

As the language evolves to support better programming prac-
tices, developers need to adapt their codebases to take advantage of
these new features. This process is known as language rejuvenation
or language migration, and involves refactoring existing code to
replace deprecated constructs with the new ones [13–16, 19]. Over-
all, software migration is a complex and error-prone task, often
requiring significant effort from developers [1, 12, 18]. Many stud-
ies have investigated the use of Large Language Models (LLMs) to
automate software migration tasks [1, 12]. For example, Almeida
et al. [1] explored the use of ChatGPT to migrate two major ver-
sions of the SQLAlchemy library in one Python project. Islam et al.
[12] assessed the performance of LLMs in migrating several Python
libraries. Language migration is particularly challenging since it
often involves structural changes to the codebase [15, 24].

However, we lack studies addressing the use of LLMs for lan-
guage migration tasks. In this work, we aim to fill this gap by
providing a dataset of real-world migrations from Promises to
Async/Await syntax in JavaScript projects. We are particularly
interested in this migration scenario due to two main reasons [10].
First, asynchronous programming is frequently used in JavaScript to
circumvent its single-threaded design when developing responsive
applications. Second, the Async/Await syntax greatly simplifies the
management of asynchronous operations as it enables developers
to write procedural-style code that is easier to read and maintain.

The PromiseAwait dataset contains 4,221 migration instances
at its current version, extracted from 1,530 commits and 408 real-
world projects. These instances were automatically detected using
a heuristic based on regular expressions, manually validated by
inspecting real migration cases on GitHub. This dataset represents
an initial effort to build a benchmark for studying the performance
of LLMs in performing language migration tasks.

Data Availability. The PromiseAwait is publicly available at
https://doi.org/10.5281/zenodo.17644182.

2 From Promises to Async/Await
Asynchronous programming is paramount in modern JavaScript
development, allowing developers to implement responsive appli-
cations that can handle multiple tasks simultaneously [7, 10]. In the
early days, JavaScript developers primarily relied on callbacks to
manage asynchronous operations. However, as applications grew in
complexity, this approach led to deeply nested and hard-to-maintain
code structures, often referred to as "callback hell" [10].

https://doi.org/10.1145/3793655.3793714
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793655.3793714
https://doi.org/10.5281/zenodo.17644182

FORGE ’26, April 12–13, 2026, Rio de Janeiro, Brazil Rafael Araujo Magesty and João Eduardo Montandon

The Advent of Promises. The first significant improvement came
with the introduction of Promises in ECMAScript 2015 (ES6) [8].
A promise represents a value computed asynchronously, and can
assume one of three states: pending, fulfilled, or rejected [10]. Upon
creation, a promise is in the pending state, waiting for the async
operation to complete. Once the operation finishes, the promise is
settled to either fulfilled (i.e., successfully completed) or rejected (i.e.,
failed). A Promise object is created with two parameters: resolve
and reject. The first is called when the operation is successful,
while the second is invoked in case of an error.

1 function fetchData () {
2 return new Promise ((resolve , reject) => {
3 const data = { message: "Data fetched successfully!

" };
4 resolve(data);
5 }, 2000);
6 });
7 }
8
9 fetchData ()
10 .then((data) => console.log(data.message))
11 .catch((error) => console.error("Error fetching data:",

error));

Figure 1: Example of using Promises in JavaScript

Figure 1 illustrates a simple example of using Promises to han-
dle an asynchronous operation. In this example, the fetchData
function returns a promise that resolves after a 2-second delay. We
then call fetchData(), and capture the resolved value using the
.then() method, while errors are handled with the .catch() call.
Although Promises significantly improved code readability com-
pared to callbacks, they still present structural limitations, especially
when chaining multiple asynchronous operations in sequence.

The Emergence of Async/Await. To improve developers’ experience
with asynchronous code, ECMAScript 2017 (ES8) introduced the
async/await syntax [8]. This syntactic sugar allows developers to
write and call asynchronous code as if it were synchronous, greatly
enhancing code clarity and maintainability [10, 13]. All developers
need to do is declare a function as async, which automatically
makes it return a promise. Then, every call to an asynchronous
operation can be prefixed with the await keyword, which pauses
the function execution until the promise returned by the async
operation is resolved or rejected.

1 async function fetchData () {
2 const data = { message: "Data fetched successfully!" };
3 return data;
4 }
5
6 try {
7 const data = await fetchData ();
8 console.log(data.message);
9 } catch (error) {
10 console.error("Error fetching data:", error);
11 }

Figure 2: Example of using Async/Await in JavaScript

Figure 2 presents the previous example refactored to use the
async/await syntax. The fetchData is declared as an async func-
tion, thus it automatically wraps its return value in a promise. Also,
the fetchData() call now is prefixed with the await keyword,
which pauses execution until the promise returned by fetchData
is resolved. In case the promise is rejected, the error is propagated
to the surrounding try...catch block, which handles it appropri-
ately. As we can see, the code is more idiomatic and easier to read,
resembling synchronous code structure.

3 Data Collection
Our data collection process is organized in three major steps. This
section explains each step in detail.

3.1 Repository Selection
On 10/22/2025, we fetched the top-500 most popular JavaScript
projects from GitHub API, using the number of stars as popularity
criterion [6]. For each project, the first author collected its name,
URL, number of stars, forks, size, license, creation date, last commit
date, and description. Next, the same author manually analyzed
the title and description of each repository and filtered out those
considered non-systems, i.e., educational repositories, tutorials,
and toy examples. As a result, we ended up with 408 real-world
JavaScript projects.

3.2 Detecting Async/Await Migration
3.2.1 Inspecting Async/Await Migration Cases. To better under-
stand the changes performed when developers migrate from Pro-
mises to Async/Await, we manually analyzed pull requests created
by developers on GitHub reporting this migration. Specifically, we
searched on GitHub website for "Promise to async/await", and fil-
tered by pull requests marked as closed, performed on JavaScript
projects. We then manually investigated these PRs to identify key
migration patterns and collected the source code of their reposito-
ries to use as test cases for heuristic development.

3.2.2 Migration Heuristic Implementation. Based on the manual in-
spection performed earlier, we implemented an automated heuristic
to detect Promise to async/await migration events at scale. Given a
source code diff, this heuristic relies on a set of regular expressions
to detect the following patterns.

• Removed code snippets containing the Promise syntax key-
words, specifically the keyword Promise and its chaining
methods, such as then().1

• Added code snippets containing async and await keywords,
required for adopting Async/Await feature.2

Only source code diffs containing both criteria—Promise removal
and async/await addition—were flagged as migration instances.

3.3 Collecting Migration Cases
Once we defined the heuristic for detecting Async/Await migration,
we applied it to all commits performed across the projects initially
selected. For each project, we cloned and traversed all commits
performed on its main branch; we relied on PyDriller [21] for this
1\bnew\s+Promise\s*\(|\.then\s*\()
2\basync\b|\bawait\b

PromiseAwait: A Dataset of JavaScript Migrations from Promises to Async/Await FORGE ’26, April 12–13, 2026, Rio de Janeiro, Brazil

process. For each commit, we gathered all source code diffs and
applied the heuristic to each one separately; the source code diffs
were detected andmatched using the UniDiff library.3 We submitted
each diff to our heuristic and selected the ones flagged as migration
instances. In total, we analyzed commits from the 408 projects.

4 The PromiseAwait Dataset
Dataset Characteristics. The PromiseAwait dataset represents a first
collection of real-world migrations from the Promise-based pat-
tern to the async/await syntax in JavaScript projects. Currently,
the dataset encompasses 4,221 migration instances, extracted from
1,530 commits and 134 projects. On average, each commit con-
tains approximately 3.09 distinct instances, while projects average
around 31.5 cases each.

Figure 3 presents the distribution of the migration instances. To
keep this visualization clear, we excluded instances located at the
last percentile, (i.e, removed the 42 instances with the highest line
changes). We can see that the changes introduced by these instances
are relatively small, since 87% added and removed no more than
100 lines. Interestingly, most migration instances removed more
lines than they added. This suggests that the Async/Await syntax
help reduce boilerplate code, leading to a more concise source code.

0 100 200 300 400 500 600
Removed Lines

0

100

200

300

400

500

600

Ad
de

d
Li

ne
s 1:1

 Rat
io

(E
qu

al
Siz

e)

Figure 3: Migration instances distributed according to their
number of added and removed lines.

Dataset Structure. At its current version, the PromiseAwait dataset
is stored in a single CSV. Each line stores the metadata from the
repository the migration belongs to, as well as the source code be-
fore and after the migration. Specifically, we maintain the following
information for each migration instance.

• Project: Name of the project that was extracted.
• Commit hash: The unique SHA hash identifying the spe-
cific commit where the migration occurred.

• Author: Developer who authored the commit.
• Message: The full commit message, providing contextual
information about the change.

• File path: The path to the specific file within the repository
where the code change was made.

3https://pypi.org/project/unidiff/

• Commit url: The direct URL link to the commit on GitHub,
enabling easy external verification.

• Removed chunk: The block of code that was removed,
containing the original Promise-based syntax.

• Added chunk: The block of code that was added, containing
the new async/await syntax.

• Commit date: Date and time of the authored commit.

5 Migration Examples
To give readers a concrete view of the migrations collected in
the PromiseAwait, Figure 4 depicts two real-world examples of
Promise to Async/Await migrations.

Simple Example. Figure 4a illustrates a straightforward migration
case implemented on the CesiumJS project, a widely-used open-
source JavaScript library for creating 3D globes and maps. This
migration refactors a function responsible for loading metadata
schemas asynchronously. The original code relies on a Promise
chain, invoking schemaLoader.load() and handling the subse-
quent action within a .then() function. The code inside this call,
executed after the Promise triggered by schemaLoader.load() is
resolved, initializes a metadata object containing the loaded schema.
Finally, this object is assigned to the tileset._metadataExtension
property, declared in the outer scope of the chain.

The migrated code removes the entire Promise chain, allowing
the scope of asynchronous operations to be shared with the rest
of the function. The metadataExtension initialization can now
rely on the result of the await schemaLoader.load() call. As this
object now belongs to the same scope as the rest of the function, it
can be directly returned at the end of the function, without needing
to be assigned to an outer-scoped variable first. All in all, this
migration significantly simplifies the code structure, making it
more linear and easier to follow.

Complex Example. Figure 4b presents a migration case from the
Codesandbox-client project, a popular Integrated Development
Environment (IDE) for web development. This transition involves
refactoring a fetch operation that retrieves and processes external
data. The original code employs a Promise chain, starting with a
fetch() call, followed by a sequence of .then() calls to sequen-
tially process the response and parse it as a JSON object. This chain
ensures that each step is executed only after the previous one has
resolved successfully. Finally, a .catch() block is used to handle
any errors that may occur during the fetch or processing steps.

The migrated code replaces the whole Promise chain with a
try...catch block. Inside the try block, the fetch operation and
subsequent JSON parsing are handled sequentially using await
calls. If any error occurs during these operations, it is caught by the
surrounding catch block. In practice, the refactored code can be
interpreted sequentially, resembling synchronous code structure.

6 Related Work
Library Migration. This transition refers to replacing one library
with another in a software project [11, 12]. Prior studies have ex-
plored this phenomenon in depth. Barbosa and Hora [3] examined
migrations from unittest to pytest in open-source Python projects,
highlighting motivations such as new features, simpler syntax, and

https://pypi.org/project/unidiff/

FORGE ’26, April 12–13, 2026, Rio de Janeiro, Brazil Rafael Araujo Magesty and João Eduardo Montandon

(a) Simple example, performed on CesiumJS.

(b) A complex example, performed on Codesandbox-client.

Figure 4: Source code examples illustrating more simple and complex Promise-to-Async/Await migrations.

flexibility; Alves and Hora [2] extended this work by curating a
dataset of corresponding source code migrations. Islam et al. [12]
characterized structural changes in 311 Python projects, identifying
patterns such as the use of decorators and exception handling. More
broadly, Gu et al. [11] compared migration practices across Java,
JavaScript, and Python ecosystems, showing common motivations
like deprecation or feature improvement.

Language Migration. By contrast, language migration focuses on
adapting the codebase to support new language features [4, 10, 14,
16, 19]. Developers are compelled to perform these transitions to
increase code readability, conciseness, and maintainability [13, 20].
Previous studies have investigated this phenomenon in various con-
texts. Malloy and Power [14] quantified to what extent open-source
Python projects migrated from Python 2 to Python 3, concluding
that developers were reluctant to perform this migration due to
compatibility issues. Mendonça et al. [16] surveyed Java developers
about their impressions on adopting lambda expressions in the
language, finding this feature improves code readability when it
replaces anonymous classes and structural loops. Other studies
explored migrations between different languages. Gokhale et al.
[10] analyzed the transition from synchronous to asynchronous
programming in JavaScript, highlighting the challenges developers
face when adapting to this paradigm shift. In this work, we focused
on providing a dataset with real-world migrations between two
asynchronous programming solutions in JavaScript: Promises and
Async/Await syntax.

7 Conclusion
In this work, we presented PromiseAwait, a dataset of real-world
migrations from Promises to Async/Await syntax in JavaScript
projects. At its current state, the dataset is composed of 4,221 migra-
tion instances, obtained from 134 real-world projects. Each instance
contains the isolated code change that performed the migration,
allowing researchers to easily evaluate the performance of LLMs in
this specific migration task.

Next Steps. We intend to extend this work in two main directions.
First, we plan to expand the dataset with different migration sce-
narios, such as the transitions from callbacks to Promises, and from
traditional function expressions to arrow functions. Second, we aim
to use this dataset as a benchmark to evaluate the performance of
LLMs in performing language migration tasks.

Acknowledgments
This work was partially supported by INES.IA (National Institute of
Science and Technology for Software Engineering Based on and for
Artificial Intelligence) www.ines.org.br, CNPq grant 408817/2024-0.
It was also supported by grants from CNPq (403304/2025-3) and by
FAPEMIG (APQ-02419-23).

References
[1] Aylton Almeida, Laerte Xavier, and Marco Tulio Valente. 2024. Automatic Library

Migration Using Large Language Models: First Results. In 18th International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–7.

www.ines.org.br

PromiseAwait: A Dataset of JavaScript Migrations from Promises to Async/Await FORGE ’26, April 12–13, 2026, Rio de Janeiro, Brazil

[2] Altino Alves and Andre Hora. 2025. TestMigrationsInPy: A Dataset of Test
Migrations from Unittest to Pytest. In Mining Software Repositories (MSR): Data
and Tools Showcase Track. 1–5.

[3] Livia Barbosa and Andre Hora. 2022. How and Why Developers Migrate Python
Tests. In International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER). 538–548.

[4] Luciano Baresi, Massimiliano Di Penta, Giovanni Quattrocchi, and Damian An-
drew Tamburri. 2024. How Have iOS Development Technologies Changed over
Time? A Study in Open-Source. In Proceedings of the IEEE/ACM 11th International
Conference on Mobile Software Engineering and Systems. 33–42.

[5] Justus Bogner and Manuel Merkel. 2022. To Type or Not to Type? A Systematic
Comparison of the Software Quality of JavaScript and Typescript Applications on
GitHub. In 19th International Conference on Mining Software Repositories (MSR).
658–669.

[6] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Under-
standing Repository Starring Practices in a Social Coding Platform. Journal of
Systems and Software (2018), 112–129.

[7] Douglas Crockford. 2017. JavaScript: The Good Parts: The Good Parts. O’Reilly
Media.

[8] ECMA International. 2025. ECMAScript Language Specification.
[9] Fabio Ferreira, Hudson Borges, and Marco Tulio Valente. 2024. Refactoring

React-based Web Apps. Journal of Systems and Software 1 (2024), 1–36.
[10] Satyajit Gokhale, Alexi Turcotte, and Frank Tip. 2021. Automatic Migration

from Synchronous to Asynchronous JavaScript APIs. Proceedings of the ACM on
Programming Languages OOPSLA (2021), 1–27.

[11] Haiqiao Gu, Hao He, and Minghui Zhou. 2023. Self-Admitted Library Migrations
in Java, JavaScript, and Python Packaging Ecosystems: A Comparative Study. In
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). 627–638.

[12] Mohayeminul Islam, Ajay Kumar Jha, Ildar Akhmetov, and Sarah Nadi. 2024.
Characterizing Python Library Migrations. In ACM International Conference on
the Foundations of Software Engineering (FSE), Vol. 1. 1–23.

[13] Walter Lucas, Rafael Nunes, Rodrigo Bonifácio, Fausto Carvalho, Ricardo Lima,
Michael Silva, Adriano Torres, Paola Accioly, Eduardo Monteiro, and João Saraiva.
2025. Understanding the Adoption of Modern Javascript Features: An Empirical

Study on Open-Source Systems. Empirical Software Engineering (2025), 1–42.
[14] Brian A. Malloy and James F. Power. 2017. Quantifying the Transition from

Python 2 to 3: An Empirical Study of Python Applications. In 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). 314–323.

[15] Walter Mendonça. 2024. Towards a Theory for Source Code Rejuvenation. In
32nd ACM International Conference on the Foundations of Software Engineering
(FSE). 701–703.

[16] Walter Lucas Monteiro Mendonça, José Fortes, Francisco Vitor Lopes, Diego
Marcílio, Rodrigo Bonifácio De Almeida, Edna Dias Canedo, Fernanda Lima, and
João Saraiva. 2020. Understanding the Impact of Introducing Lambda Expressions
in Java Programs. Journal of Software Engineering Research and Development 8
(2020).

[17] João Eduardo Montandon, Luciana Lourdes Silva, and Marco Tulio Valente. 2019.
Identifying Experts in Software Libraries and Frameworks Among GitHub Users.
In 16th International Conference on Mining Software Repositories (MSR). 276–287.

[18] João Eduardo Montandon, Luciana Lourdes Silva, Cristiano Politowski, Daniel
Prates, Arthur de Brito Bonifácio, and Ghizlane El Boussaidi. 2025. Unboxing
Default Argument Breaking Changes in 1 + 2 Data Science Libraries. Journal of
Systems and Software (2025), 1–38.

[19] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. 2013. Adoption and Use
of Java Generics. Empirical Software Engineering (2013), 1047–1089.

[20] Leonardo Humberto Silva, Miguel Ramos, Marco Tulio Valente, Alexandre Bergel,
and Nicolas Anquetil. 2015. Does JavaScript Software Embrace Classes?. In
22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 73–82.

[21] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python
Framework for Mining Software Repositories.

[22] Stack Overflow. 2024. Stack Overflow Developer Survey.
https://survey.stackoverflow.co/2024/.

[23] GitHub Staff. 2025. Octoverse: A New Developer Joins GitHub Every Second as
AI Leads TypeScript to #1.

[24] Celal Ziftci, Stoyan Nikolov, Anna Sjövall, Bo Kim, Daniele Codecasa, and Max
Kim. 2025. Migrating Code At Scale With LLMs At Google. In ACM International
Conference on the Foundations of Software Engineering (FSE). 1–12.

	Abstract
	1 Introduction
	2 From Promises to Async/Await
	3 Data Collection
	3.1 Repository Selection
	3.2 Detecting Async/Await Migration
	3.3 Collecting Migration Cases

	4 The PromiseAwait Dataset
	5 Migration Examples
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

