Understanding Type Hints in Python Libraries and Frameworks:
Early Insights

Thiago Roberto Magalhaes
trm@ufmg.br
Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brasil

Abstract

In Python, type hints allow developers to annotate variables and
functions with explicit type information, improving code clarity
and reliability. This paper presents an initial study on the adoption
and usage of type hints in Python libraries and frameworks. By ana-
lyzing 1,000 popular GitHub repositories, we address two questions:
(a) whether libraries and frameworks adopt type hints, and (b) how
type hints are used in these components. While 91% of libraries use
type hints at least once, this adoption is not consistent, as half of
them cover only 13.6% of their members with types. Considering
libraries with systematic usage, maintainers prioritize annotating
function parameters and return types (45.8% and 35.9% median
coverage), mainly using built-in types (73.0%). These findings high-
light the role of type hints in APIs maintenance while pointing to
opportunities for improved tooling and automation.

CCS Concepts

« Software and its engineering — Software maintenance tools;
Software development techniques; Language types.

ACM Reference Format:

Thiago Roberto Magalhées and Joao Eduardo Montandon. 2026. Understand-
ing Type Hints in Python Libraries and Frameworks: Early Insights. In 34th
IEEE/ACM International Conference on Program Comprehension (ICPC °26),
April 12-13, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3794763.3794792

1 Introduction

Libraries and frameworks are the building blocks of modern soft-
ware development [10, 14, 23]. These components provide pre-built
functionalities that speed up the implementation of software prod-
ucts by allowing developers to focus on core business logic. This
modular approach not only enhances code reusability but also re-
duces maintenance costs, allowing teams to deliver robust and
scalable solutions faster and cheaper. In this context, the Python
ecosystem emerges as one of the most active [22, 24], offering
solutions for a wide range of software applications, from web de-
velopment to data science and machine learning [15, 25, 28].
Python was designed to be simple and clean, making it easy to
read and write code [17, 19]. The language is dynamically typed, i.e.,
variable types are determined and checked at runtime rather than
at compile time [27]. Such features give developers a large degree of

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPC 26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2482-4/2026/04

https://doi.org/10.1145/3794763.3794792

Jodo Eduardo Montandon
joao@dcc.ufmg.br
Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brasil

freedom when writing code, since they can handle different objects
uniquely based on their behavior.! In practice, developers can im-
plement programs faster and with less boilerplate [13, 27]. However,
dynamic typing can also lead to potential issues, such as runtime
type errors that are only detected during execution [1, 3, 4, 6, 27].
To aid static analysis tools in detecting type inconsistencies before
runtime, Python introduced type hints in 2014 at version 3.5 [17].
This feature allows developers to annotate variables and functions
with explicit type information, thus providing more context about
which types are expected when using these annotated members.
Type hints have gained significant traction within the Python
community since their introduction [24], being adopted in popular
projects such NumPy? and Pandas.® Prior work in the literature has
shown the benefits of using types to improve error detection and
software maintainability [1, 3, 5-7, 9, 11-13]. Yet, little is known
about how type hints are adopted in libraries and frameworks.

Proposed Study. We present a first outlook on the use of type
hints in real-world Python libraries and frameworks. We collected
and extracted type annotation data from 1,000 popular Python
repositories hosted on GitHub, identified which ones are libraries
and frameworks, and analyzed their type hint usage. Specifically,
we investigated the following research questions:

e RQ1. Do Libraries and Frameworks Adopt Type Hints? Despite
91% of libraries have used type hints at least once, this adop-
tion is not employed consistently across their codebase. In
fact, half of the libraries covered only 13.6% of their members
with types.

RQ2. How Type Hints are Used in Libraries and Frameworks?
Considering libraries with systematic type hint usage, main-
tainers focus on annotating function parameters and return
types, with median coverage of 45.8% and 35.9%, respec-
tively. Furthermore, built-in types are preferred, accounting
for 73.0% of all type annotations in half of the libraries.

We believe the emerging insights from this study shed light on
how type hints are being used in Python libraries and frameworks,
guiding future research in this topic.

2 Understanding Type Hints

Type Hints are one of the biggest changes in Python history [17].
Introduced in PEP 484% in 2014, this proposal specifies the syntax
and semantics for explicit type declarations in function arguments,

Uhttps://en.wikipedia.org/wiki/Duck_typing
Zhttps://numpy.org/
3https://pandas.pydata.org/
“https://peps.python.org/pep-0484/

https://orcid.org/0009-0008-4024-4217
https://orcid.org/0000-0002-3371-7353
https://doi.org/10.1145/3794763.3794792
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3794763.3794792
https://en.wikipedia.org/wiki/Duck_typing
https://numpy.org/
https://pandas.pydata.org/
https://peps.python.org/pep-0484/

ICPC 26, April 12-13, 2026, Rio de Janeiro, Brazil

return values, and variables. Type hints are provided as a gradual
type system, where type annotations (a) are optional, since Python
checker should not emit warning for code without types; (b) do not
prevent inconsistent values from being assigned during runtime,
and (c) do not improve programs performance since types are not
added to the program’s bytecode. The goal is to provide more type
information to static analysis tools so they can detect inconsistencies
more effectively before runtime.

A Type Hint Example. Figure 1 presents an example about the
use of type hints. Lines 1 and 2 define the concat function, which
receives two strings as parameters—first and second—and prints
the concatenation of both on the screen. Note that both parameters
are annotated with the type str, the string type in Python, and the
return value is annotated with None, representing a method without
return value.

def concat(first: str, second: str) -> None:
print(first + second)

concat("Type", "Hint")
concat (1, 2)

Figure 1: A function with type hints in Python.

Line 4 calls concat with "Type" and "Hint" as parameters, which
prints "TypeHint". This call is not only valid but also expected, since
the type of the values involved in the call match the types annotated
in concat’s definition. Static analysis tools emit no warning on this
call.

On the other hand, line 5 invokes the function with 1 and 2 as
parameters. This call clearly violates the annotated types, since both
values belong to the int type. Any static analysis tool shall emit
a warning on this line, showing that the types are incompatible.
Nonetheless, this code will still execute and print 3 as a result, i.e.,
it will sum both int values. This happens because, in a gradual type
system, type hints do not prevent runtime type errors; they are
intended to aid static analysis and tooling.

3 Study Design

We advocate the usage of type hints is particularly important in
libraries & frameworks, where the lack of clarity, correctness, and
the presence of errors impact the reliability of the features provided
by them [4, 8, 12, 15]. This study provides an initial assessment of
how type hints are being used in Python third-party components.

3.1 Resarch Questions

In this initial study, we elaborated two research questions to be
answered.

RQ1. Do Libraries and Frameworks Adopt Type Hints? Prior work
shows that the adoption of type hints is becoming more popular
on Python projects [3, 13]. However, we lack empirical evidence
on how this feature is being adopted by libraries & frameworks.
Thus, we first verify whether projects representing third-party
components do use type hints in their codebase.

Magalhaes and Montandon

RQ2. How Type Hints are Used in Libraries and Frameworks? We
conduct an exploratory investigation to understand how maintain-
ers utilize type hints in libraries & frameworks. Particularly, we
analyzed where type hints are mostly employed, and what are the
most frequent annotated types.

3.2 Data Collection

The study design and methodology adopted in this work is depicted
at Figure 2, and is described as follows.

1. Fetch GitHub Repositories. We initially gathered a collection
of 1,000 Python repositories using the GitHub API, ranked by the
number of stars. This approach ensured our dataset to contains well-
established and widely adopted projects in the Python ecosystem
from a diverse range of domains such as web development, data
science, and machine learning. We recorded repositories metadata—
such as repository name, number of stars, and number of Python
files—for later reference.

2. Repository Selection. To improve data quality and reduce
noise, we applied several filtering criteria. First, repositories con-
taining fewer than 30 Python source files were excluded, since
small projects rarely contain sufficient code to provide meaningful
insights into annotation practices. Second, we removed repositories
primarily designed for educational purposes (e.g., tutorials, course
materials, or example snippets), as they tend to exhibit artificially
simplified code [2, 18]. Third, we excluded repositories that were
forks or duplicates of other projects in our dataset to avoid redun-
dancy and ensure diversity in our analysis. Finally, we disconsidered
those whose primary language was not English. After this step, 720
repositories were selected.

3. Repository Classification. One author manually analyzed the
name, description, and tags of each repository to classify them
as either libraries & frameworks or others [2]. The second author
independently categorized a sample of 100 repositories to assess
inter-rater agreement. The resulting Cohen’s Kappa was 0.52, in-
dicating moderate agreement between both classifications [26].
Differencies between both classifications were discussed to reach a
consensus among the raters. Each repository classified as libraries
& frameworks was cloned locally to enable further static analysis
of its source code.

4. Type Hints Extraction. We performed an in-depth static anal-
ysis to identify and extract the type hints implemented in their
codebase. For this, we built a custom analyzer in Python based
on the Abstract Syntax Tree (AST) module.® For each repository,
we parsed every python file, generated their ast, and visited the
following nodes to extract their type hints.

o Annotated assignments (AnnAssign), to detect type hints ap-
plied to variables, regardless of their declaration scope.

o Function definitions (FunctionDef), to extract both parame-
ter and return type annotations.

5. Type Hints Classification. We classify the type hints into one
of the following three categories according to their origin.

Shttps://docs.python.org/3/library/ast.html

https://docs.python.org/3/library/ast.html

Understanding Type Hints in Python Libraries and Frameworks: Early Insights

> . _Repository
Selection

Fetch
Github
Repositories

,I’“%

Repository

Classification

ICPC °26, April 12-13, 2026, Rio de Janeiro, Brazil

> 10% overall type hints

4 5
Type Hints R Type Hints .
Extraction Classification

1000 Python
repositories

724 Python
repositories

Libs &
frameworks

Figure 2: Data Collection adopted in this study.

e Built-in types, representing types that are provided by the
Python language, such as int, str, and dict. These types
were mapped based on the list of built-in types in the official
Python documentation.®

e Local types, corresponding to types declared locally in the
repository, such as classes, data structures, or aliases. To
make this verification possible, we leveraged all type decla-
rations performed in the project where the annotated type
was found and verified whether the annotated type matched
any of these locally declared classes.

o External types, referring to types that do not belong to the pre-
vious categories, thus originating from third-party libraries
like Tensor from pytorch, and DataFrame from pandas.

Before applying this classification, we performed a normalization
step to ensure consistent comparison across all extracted types. We
(a) removed any package prefixes, e.g., converting typing.Dict
to Dict, and (b) unified equivalent constructs, e.g., making Dict
= dict. To avoid excessive fragmentation, we treated complex
annotations conservatively: for generics, only the container type
was considered; for union and optional types, we decomposed them
into their base components, excluding None.

3.3 The Resulting Dataset

From the 720 repositories selected for our study, 152 (21%) are
libraries & frameworks. For each type hint detected, we stored: (a)
the file path, (b) the qualified member name, (c) the annotated
type, (d) the member category (local variable, parameter, or return),
and (e) a contextual code snippet with the extracted annotation. In
total, this procedure analyzed 4,670,698 source code members and
extracted 649,099 type hints. We used this baseline to answer the
research questions proposed for this work.

Type Hint Coverage Metric. To properly assess the adoption of
type hints across libraries & frameworks, we computed a proportion-
based metric called type hint coverage. For a given repository, this
metric calculates the ratio of annotated members to the number of
eligible members in the context under analysis. For example, the
flask framework contains 4,614 overall members—i.e., parameters,
return commands, and variables—of which 1,011 are annotated with
type hints. Thus, its overall type hint coverage is 21.9% (1,011/4, 614).
From these, 1,808 are parameters and 524 of them are annotated,
resulting in a parameter type hint coverage of 28.9% (524/1, 808). We
used this metric as it allows fair comparison between repositories
of different sizes and characteristics.

Shttps://docs.python.org/3/library/stdtypes.html

4 Results

RQ1. Do Libraries and Frameworks Adopt Type Hints? Over-
all, 139 out of 152 (91%) libraries & frameworks contain at least one
type hint in their codebase. The project with the highest type hint
coverage is openai-python—the official library for the OpenAl API—
with 61%, follwed by altair—library for data visualization—with
53%. Other popular projects show consistent adoption across their
codebases. Pytest—one of the most popular Python libraries for
software testing—annotates 39% of its members. FastAP[—a well-
known web development framework—fulfilled 35% of its members
with type hints.

0% 25% 50% 75% 100%
Type Hint Coverage

Figure 3: Distribution of overall type hint coverage.

Despite these successful cases, most projects do not apply type
hints consistently across their codebase. Figure 3 shows the distri-
bution of type hint coverage among libraries & frameworks. The
median type hint coverage is 13.6%, while the third quartile anno-
tated 26% of their eligible members.

Overall, 91% of libraries & frameworks include at least one
type hint, which does not mean type hints are consistently
used. On the contrary, half of the libraries & frameworks
reported 13% of type hint coverage.

=
H*
=1o)
=
=
=
[

RQ2. How Type Hints are Used in Libraries and Frameworks?
To address RQ2, we focused on libraries & frameworks with at least
10% overall type hint coverage, filtering out those with occasional
usage; this resulted in a subset of 86 repositories. Figure 4 presents
the distribution of the type hint coverage according to where they
were applied, and what types were used in the annotations.

The distribution of type hint usage according to their location
is shown in Figure 4a. As we can see, parameters and return types
are significantly more annotated than variables. The median type
hint coverage for parameters and return types are 45.8% and 35.9%,
respectively, while variables present a median coverage of only

https://docs.python.org/3/library/stdtypes.html

ICPC 26, April 12-13, 2026, Rio de Janeiro, Brazil

100%

75%

50%

25%

Type Hint Coverage

0%

Parameters Return Variables

(a) Type Hint Location

Magalhaes and Montandon
100%
75%
50% |
25%
0% é

Built=in Local Types

Type Hint Coverage

External Types

(b) Type Hint Level

Figure 4: Distribution of type hint usage according to their location and type levels.

6.3%. We performed a Spearman’s correlation analysis to assess the
relationship between the coverage of these code members [16, 21].
We found a strong correlation between the coverage of parameters
and return types (p = 0.64, p < 0.05); by contrast, variable coverage
shows a weak correlation with both parameters (p = 0.27, p <
0.05) and return types (p = 0.28, p < 0.05). This suggests that
library maintainers prioritize annotating function signatures over
local implementation details, probably to enhance API clarity and
increase library documentation.

Figure 4b illustrates the distribution of type hint coverage ac-
cording to their type levels. Built-in types are largely adopted, as
50% of the libraries & frameworks present 73.0% of their type hints
using built-in types. On the other hand, local object types are less
frequently used, with a median coverage of 19.7%. External object
types are the least employed, with a median coverage of 4.4%.

Developers prioritize annotating function parameters and
return types, indicating a focus on external API interfaces.
The large majority of type hints rely on built-in types.

~N
3
o0
£
S
=S
(55

5 Related Work

Empirical research shows the advantage of using systems to detect
errors before runtime, to reduce debugging costs, and to improve
code maintainability [1, 5, 7]. Hanenberg et al. [7] have shown
through a controlled experiment with 33 subjects that static typing
assists developers in better navigating through the code base, re-
ducing the effort to maintain software projects. Gao et al. [5] found
that static type checkers implemented in Flow and TypeScript—
supersets of the JavaScript language—could detect approximately
15% of real-world bugs in JavaScript projects. In a similar study,
Bogner and Merkel [1] has shown that TypeScript applications
present better code quality and legibility when compared to Java-
Script ones. Mezzetti et al. [12] showed that many breaking changes
detected in JavaScript projects are due to type-related issues.
Prior work has also investigated the adoption of optional and
gradual type systems [3, 13, 20]. Di Grazia and Pradel [3] con-
ducted a large-scale empirical study on type annotation evolution
in Python, where they analyzed 1.4 million annotation changes
extracted from 9,655 popular GitHub projects. The authors revealed

that type hints are increasingly being adopted and, once added, can
help developers at detecting further type errors. Similarly, Scars-
brook et al. [20] investigated TypeScript adoption among 454 repos-
itories, finding that while TypeScript compiler is rapidly being
adopted, the adoption of language-specific features varies signifi-
cantly between the analyzed projects. Mir et al. [13] presents Many-
Types4Py, a dataset with approximately 870K type annotations,
instrumented for training machine learning models specialized
in performing type inference. Unlike prior large-scale studies on
Python type annotations, our work focuses on libraries and frame-
works, i.e., the building blocks of modern software development.

6 Conclusion

In this work, we report initial findings on the adoption of type
hints in popular libraries and frameworks written in Python. For
this, we extracted and analyzed 649,099 type annotations declared
in 152 Python libraries & frameworks hosted on GitHub. While 9
out of 10 libraries use type hints at least once, half of them anno-
tate, at most, 13.6% of their code members. Maintainers focus on
annotating function parameters and return types, mainly using
built-in types, indicating a focus on API maintenance over internal
implementation details.

Next Steps. This initial study unveiled some interesting directions
for research. An in-depth and qualitative analysis is needed to
understand why developers decide to introduce type hints in certain
members, as well as how these types are maintained over time. As
type hints are apparently used in specific situations, new automated
tools could help identify which members to annotate.

Replication Package. The dataset and scripts used in this study are
publicly available at: https://doi.org/10.5281/zenodo.17615605.

Acknowledgments

This research was supported by grants from CNPq (403304/2025-3)
and by FAPEMIG (APQ-02419-23).

References

[1] Justus Bogner and Manuel Merkel. 2022. To Type or Not to Type? A Systematic
Comparison of the Software Quality of JavaScript and Typescript Applications on

https://doi.org/10.5281/zenodo.17615605

Understanding Type Hints in Python Libraries and Frameworks: Early Insights

[2

=

(3

=

[6

=

[7

[

[10

[11]

[12

[14]

[15]

[16]

[17]

[18

[19]
[20]

[21]

[24]

[25

[26]

[27]

GitHub. In 19th International Conference on Mining Software Repositories (MSR).
658-669.

Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the Factors that Impact the Popularity of GitHub Repositories. In 32nd IEEE
International Conference on Software Maintenance and Evolution (ICSME). 334—
344.

Luca Di Grazia and Michael Pradel. 2022. The Evolution of Type Annotations in
Python: An Empirical Study. In 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 209-220.
Xingliang Du and Jun Ma. 2022. AexPy: Detecting API Breaking Changes in
Python Packages. In 33rd International Symposium on Software Reliability Engi-
neering (ISSRE). 470-481.

Zheng Gao, Christian Bird, and Earl T. Barr. 2017. To Type or Not to Type:
Quantifying Detectable Bugs in JavaScript. In 39th International Conference on
Software Engineering (ICSE). 758-769.

Yimeng Guo, Zhifei Chen, Lin Chen, Wenjie Xu, Yanhui Li, Yuming Zhou, and
Baowen Xu. 2024. Generating Python Type Annotations from Type Inference:
How Far Are We? ACM Transactions on Software Engineering and Methodology
33, 5 (2024), 123:1-123:38.

Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Eric Tanter, and
Andreas Stefik. 2014. An Empirical Study on the Impact of Static Typing on
Software Maintainability. Empirical Software Engineering (2014), 1335-1382.
Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe. 2024.
Understanding the Impact of APIs Behavioral Breaking Changes on Client Appli-
cations. In Proceedings of the ACM on Software Engineering (FSE), Vol. 1. 1238—
1261.

Wei Jin, Dongjie Zhong, Zhen Ding, Min Fan, and Tianyin Liu. 2021. Where
to Start: Studying Type Annotation Practices in Python. In 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 529-541.
doi:10.1109/ASE51524.2021.9678947

Maxime Lamothe, Yann-Gaél Guéhéneuc, and Weiyi Shang. 2021. A Systematic
Review of API Evolution Literature. Comput. Surveys (2021), 1-36.

Xuan Lin, Bin Hua, Yifan Wang, and Zhiyong Pan. 2023. Towards a Large-
Scale Empirical Study of Python Static Type Annotations. In IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). 414-425.
doi:10.1109/SANER56733.2023.00046

Gianluca Mezzetti, Anders Meller, and Martin Toldam Torp. 2018. Type Regres-
sion Testing to Detect Breaking Changes in Node.Js Libraries. In 32nd European
Conference on Object-Oriented Programming (ECOOP). 1-24.

Amir M. Mir, Evaldas Latoskinas, and Georgios Gousios. 2021. ManyTypes4Py: A
Benchmark Python Dataset for Machine Learning-based Type Inference. In 2021
IEEE/ACM 18th International Conference on Mining Software Repositories (MSR).
585-589.

Joao Eduardo Montandon, Luciana Lourdes Silva, and Marco Tulio Valente. 2019.
Identifying Experts in Software Libraries and Frameworks Among GitHub Users.
In 16th International Conference on Mining Software Repositories (MSR). 276-287.
Joao Eduardo Montandon, Luciana Lourdes Silva, Cristiano Politowski, Daniel
Prates, Arthur de Brito Bonifacio, and Ghizlane El Boussaidi. 2025. Unboxing
Default Argument Breaking Changes in 1 + 2 Data Science Libraries. Journal of
Systems and Software (2025), 1-38.

Chris Parnin, Christian Bird, and Emerson Murphy-Hill. 2013. Adoption and Use
of Java Generics. Empirical Software Engineering 18, 6 (2013), 1047-1089.
Luciano Ramalho. 2022. Fluent Python: Clear, Concise, and Effective Programming.
O’Reilly Media.

Amanda Santana, Eduardo Figueiredo, and Juliana Alves Pereira. 2024. Unraveling
the Impact of Code Smell Agglomerations on Code Stability. In IEEE International
Conference on Software Maintenance and Evolution (ICSME). 461-473.

Rizel Scarlett. 2023. Why Python Keeps Growing, Explained.

Joshua D. Scarsbrook, Mark Utting, and Ryan K. L. Ko. 2023. TypeScript’s Evolu-
tion: An Analysis of Feature Adoption Over Time. In 20th International Conference
on Mining Software Repositories (MSR). 109-114.

Peter Sprent and Nigel C. Smeeton. 2016. Applied Nonparametric Statistical
Methods. CRC Press.

Stack Overflow. 2024. Stack Overflow Developer Survey.

Valerio Terragni, Partha Roop, and Kelly Blincoe. 2024. The Future of Soft-
ware Engineering in an Al-Driven World. In International Workshop on Software
Engineering in 2030. 1-6.

Evgenia Verbina. 2025. The State of Python 2025 | The PyCharm Blog.
https://blog.jetbrains.com/pycharm/2025/08/the-state-of-python-2025/.

Jiawei Wang, Tzu-Yang KUO, Li Li, and Andreas Zeller. 2020. Assessing and
Restoring Reproducibility of Jupyter Notebooks. In 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 138-149.

Matthijs J] Warrens. 2015. Five Ways to Look at Cohen’s Kappa. Journal of
Psychology & Psychotherapy (2015), 1-4.

Adam Brooks Webber. 2002. Modern Programming Languages: A Practical Intro-
duction. Franklin Beedle & Assoc.

ICPC °26, April 12-13, 2026, Rio de Janeiro, Brazil

[28] Zejun Zhang, Yanming Yang, Xin Xia, David Lo, Xiaoxue Ren, and John Grundy.

2021. Unveiling the Mystery of API Evolution in Deep Learning Frameworks: A
Case Study of Tensorflow 2. In 43rd International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP). 238-247.

https://doi.org/10.1109/ASE51524.2021.9678947
https://doi.org/10.1109/SANER56733.2023.00046

	Abstract
	1 Introduction
	2 Understanding Type Hints
	3 Study Design
	3.1 Resarch Questions
	3.2 Data Collection
	3.3 The Resulting Dataset

	4 Results
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

