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Abstract

System tests play a crucial role in ensuring the overall quality and
reliability of software systems as a whole. Still, we lack large-scale
studies and datasets focusing on investigating this type of testing,
particularly in the context of Behavior-Driven Development (BDD).
In this work we present the GivenWhenThen (GWT) dataset, a
collection of 2,289 BDD test scenarios mined from 1,720 real-world
open source projects. Each test scenario contains three artifacts: (a)
a feature file describing the BDD scenario in plain text, (b) a step
definition file responsible for implementing the steps described in
the feature file, and (c) a list of system code files used by the step
definitions. This way, we ensure to provide a dataset suitable for
training and evaluating Al models, conducting empirical studies
on BDD practices, and developing tools to automate or assist the
creation, maintenance, and execution of BDD test scenarios.

Dataset Package. The GWT dataset is publicly available at https:
//doi.org/10.5281/zenodo.17517696.
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1 Introduction

Modern software development practices have introduced a lot of
automation to the software development lifecycle [18]. Among
them, automated testing stands out as one of the most impactful
ones. Implementing these tests have become a standard practice in
several companies, like Google [19] and Meta [2]. The benefits are
many, including the identification of early bugs, documentation of
the systems’ expected behavior, and help leveraging a more modular
design [4, 5, 13]. Many academic works have studied the impact
of unit tests—automated tests that verifies the behavior of single
functions—in software quality [8, 9, 21]; some even leveraged well-
known datasets to perform their large-scale analysis [1, 6, 14, 17].

While unit tests have been extensively studied, investigating
system tests remains underexplored [12]. We are interested in a
particular approach to system test, known as Behavior-Driven De-
velopment (BDD) [20]. BDD focuses on describing the expected
behavior of the system in a sequence of test scenarios, written
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Feature: Sign up

Scenario: Successful sign up
Given I have chosen to sign up
When I sign up with valid details
Then I should receive a confirmation email
And I should see a personalized message

Figure 1: Test scenario for sign-up written in Gherkin,
adapted from Wynne et al. [20].

in a semi-structured natural language format. On top of that, de-
velopers can implement these scenarios using automation testing
frameworks, such as Cucumber! and Behave,? enabling their au-
tomatic execution. This approach promotes collaboration among
developers, testers, and product owners, besides providing action-
able specifications for automated tests execution [20].

In this work, we present GIVENWHENTHEN (GWT), a dataset of
BDD test scenarios mined from real-world open source projects.
At its current version, GWT contains 2,289 test scenarios extracted
from 1,720 GitHub repositories. We developed a heuristic that maps,
for each scenario, its corresponding step definitions—the code that
“runs” the steps described in the scenario—as well as associated
source code dependencies. As a result, the collected scenarios form
a comprehensive BDD test suite.

To the best of our knowledge, GWT is the first dataset of com-
plete BDD test scenarios. We envision several potential applica-
tions for GWT, including the development of tools to automatically
generate BDD artifacts, the analysis of BDD bad practices in open-
source projects, and the creation of benchmarks for evaluating Al
models in software testing.

Dataset Availability. The GWT dataset is publicly available at
https://doi.org/10.5281/zenodo.17517696.

2 Background

Behavior-Driven Development. Behavior-Driven Development
(BDD) is a software development approach that focuses on describ-
ing acceptance tests in a clear and understable way [20]. While
Test-Driven Development (TDD) emphasizes writing these tests
in traditional programming languages, BDD practitioners specify
them using a high-level, ubiquitous language called Gherkin. Figure
1 shows an example of a test scenario to verify the signup feature.
As we can see, tests are specified in usage scenarios; each scenario

!https://cucumber.io/
2https://github.com/behave/behave
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Figure 2: Data Collection pipeline.

is composed of a sequence of steps describing its context, actions,
and expected outcome.

By adopting this approach, BDD handles two main challenges
in software development. First, it fulfills the communication gap
between technical and non-technical stakeholders, by using a lan-
guage that is easily understood by all team members [7]. Second,
its semi-structured language enables the use of automated tools to
execute the described behavior as automated tests [20]. In practice,
the scenarios described in BDD become a living documentation
of the system, which is always up-to-date and reflects the current
behavior of the software.

The BDD Testing Stack. To make the execution of BDD scenarios
possible, developers must implement a set of step definitions, pieces
of code that map each step in the scenario to its corresponding
implementation. Each step definition is implemented in the same
programming language as the system under test, and it calls the
methods provided by the system code to effectively execute the
actions expected for the step.

In other words, creating a dataset of comprehensive BDD test
scenarios requires at least three main components: (a) the feature
files containing the test scenarios, (b) the steps definition files re-
sponsible for implementing the steps described in the scenarios,
and (c) the system code files that contain the actual implementation
of the system under test.

3 Data Collection

We organized the data collection process into five steps, as illus-
trated in Figure 2. We detail each of these steps as follows.

1. Projects Dicovery. On October 26, 2025, we queried the GitHub
API for projects that declared Cucumber as an explicit dependency
in their configuration files. Since BDD is a practice that can be
adopted in any programming language—and Cucumber is one of
the most popular tools to support this practice—we leveraged the
programming languages which Cucumber has official support, such
as JavaScript, Java, and Ruby, and implemented search strategies
that looked for the cucumber library in the configuration files of
each language, such as package. json, pom.xml, and Gemfile. We
also filtered the repositories that contained at least one file with
the . feature extension, the standard format for feature files.

We obtained a total of 5,170 unique repositories in this initial
phase. From these projects, 2,040 were written in JavaScript, 1,258
in Ruby, and 1,029 in Java; these three languages together represent

more than 83% of the mined repositories. Thus, we decided to
proceed with only projects written in one of these three languages,
totaling 4,327 repositories. Projects implemented in other languages
(e.g., Kotlin, OCaml, Scala, Go, C++, and Lua) were excluded due to
their limited representation.

2. Projects Selection. In this step, we cloned each repository
locally and filtered them according to the following criteria:

e Valid Feature Files: We removed projects with invalid fea-
ture files, i.e., empty or commented-only files. A valid feature
file should contain at least one scenario with at least one
step (Given, When, Then, And, But).

e Features written in English: We restricted feature files
to English to ensure consistent natural-language processing
and similarity-based step matching, which would otherwise
require language-specific pipelines. Language detection was
performed using the Langdetect library.3

e Uses Official Library: We selected projects that not only
declared Cucumber as a dependency, but also used it in
their codebase. To perform this verification, we implemented
a set of regular expressions to identify import statements
and annotations related to Cucumber for Java, JavaScript,
and Ruby. For example, we searched for import statements
like import io.cucumber.* and annotations like @Given,
@When, and @Then in Java projects. In JavaScript projects
we looked for require(’cucumber’) or import { Given,
When, Then } from ’cucumber’ statements.

After filtering, 1,720 of 4,327 repositories remained, excluding 655
invalid-feature, 400 non-English, and 1,552 non-official Cucumber
projects, totaling 7,872 valid feature files.

3. Step Definitions Extraction. Step definitions are mapped to
feature steps using literal strings or regular expressions [20]. In
other words, both are not structurally linked, which makes the pro-
cedure to map them more challenging. We implemented a matching
procedure to link, for each feature file, the step definition file used to
implement its steps. This procedure adopts two different strategies
to perform this match: Exploitation and Exploration [10, 16].

Exploitation Match. This heuristic matches feature steps to step def-
initions based only on properties we consider are highly indicative
of a correct match, such as exact text match and explicit feature
reference. The goal is to maximize the detection of correct pairs,

3https://pypi.org/project/langdetect/
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even if that means missing some of them. This strategy detected
1,577 tuples of feature steps and their corresponding step defini-
tions. We randomly selected a sample of 309 tuples (95% confidence
level and 5% margin of error) for manual validation, and verified
that 299 were correct, resulting in a precision of 97%.

Exploration Match. This strategy adopts a wider set of properties to
map feature steps to step definitions, including filename match, step
annotation match, etc. The goal is to favor the detection of weakly
connected pairs, i.e., pairs that are defined with different naming
conventions, more common in JavaScript and Ruby projects. This
heuristic detected 3,221 tuples of feature steps and definitions. We
randomly selected a sample of 343 tuples (95% confidence level and
5% margin of error) for manual validation, and verified that 323
were correct, resulting in a precision of 94%.

4. Integration and Refinement. After obtaining the results from
both heuristics, we merged them into a single dataset. As 1,051 pairs
were identified by both heuristics, the integrated dataset contained
3,747 unique pairs of feature files and their corresponding steps
definition files. We also detected that 1,458 feature files had no
step definitions mapped to them; we removed these files from the
dataset. Finally, 348 feature files had their features steps partially
mapped, i.e., some steps were not matched to any step definition.
In this case, we removed the test scenarios that contained at least
one unmapped step, keeping only those scenarios that had all their
steps mapped to step definitions.

5. System Code Detection. In this last step, we obtained the sys-
tem code files used by each step definition file extracted previously.
For this, we implemented a static analyzer that inspects the source
code of each step definition file and identifies the project files it
depends on. Specifically, we leveraged all import statements that
refer to source code files in the project—external dependencies were
ignored—and include them as part of the system code used by the
step definition file. At the end of this process, we obtained a total of
2,289 BDD test scenarios, each paired with its corresponding step
definition file and related system code files.

4 The GivenWhenThen Dataset

The GWT dataset contains 2,289 complete BDD test scenarios. Most
come from Java projects, since it is the language used in 1,755
scenarios (76%); JavaScript and Ruby are used in 380 (17%) and 154
(7%) scenarios, respectively.

4.1 Dataset Structure

The GWT dataset stores its BDD scenarios as JSON objects. Figure
3 shows one as example. Each instance contains basic metadata
about the test scenario, e.g., its language, repository name, and the
path to important source files. The object also includes the content
of its feature file, steps definition file, and the System Code files the
scenario depends upon. These properties are detailed below.

e repository: String that identifies the project from where
the test scenario was extracted. It allows dataset users to
traceback the project responsible for creating the test.

e language: String containing the programming language
used to implement the step definitions and system code files
used in the test scenario.

[ENTI I
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"repository": "Test-Architect/playwright-java-bdd-sample",

"language": "java",

"normalized_repo_path": "<path>/test-architect_playwright-java-
bdd-sample",

"feature_file": "src/test/resources/features/google_search.
feature",

"feature_content": "Scenario:
Given I am...",

"step_definitions_file": "<path>/steps/GoogleSearchSteps.java",

"step_definitions_content": "... public class GoogleSearchSteps

Search for Playwright on Google

{ private ...",
"system_code_files": [

{
"name": "GoogleHomePage. java",
"path": "<path>/framework/pages/GoogleHomePage. java",
"content": "... public class GoogleHomePage { private final

Page page ..."
}

Figure 3: A JSON example containing a BDD test scenario
stored in GWT.

e normalized_repo_path: Path leading to the project’s root
when cloned locally. It helps dataset users to direct access
the source code files.

e feature_content and feature_file: The path and the full
content of the feature file used in the test scenario.

e step_definitions_content and step_definitions_fi-
le: The path and the full content of the step definitions file
used in the test scenario.

e system_code_files: A list of system code files the scenario
depends upon. Each element maps the name of the system
code file, its file’s path, and the full content of the file.

4.2 A Closer Look at the Scenarios

Figure 4 shows the snippets of the feature file, step definitions file,
and the system code file extracted from the scenario presented at
Figure 3. Due to space constraints, we ommitted the full content of
these files.

Figure 4a lists the feature file, written in plain text using the
Gherkin syntax. Lines 1-2 declares the feature and test scenario
of this example, which is to perform a Google search with the
“Playwright” word. Lines 3-5 describe the three steps needed for
a user to execute this scenario. It first opens Google’s home page,
then searches for the “Playwright” word. The last step checks if the
returned page has the “results” word. If read in order, these steps
outline the actions a user should take to execute this test scenario.

Figure 4b provides a snippet of the step definitions file. The
GoogleSearchSteps class contains a home attribute, of the type
GoogleHomePage. Originally this class defines all steps, but we fo-
cus on the second one: when I search for "Playwright". This step is
linked to the search(string) method (lines 5-7) through the ewhen("1
search for {string}") annotation (line 4). The "{string}" placeholder
maps the "Playwright” text to the term parameter. Inside the method
(line 6), home . search(term) command calls the search() method
in the GoogleHomePage class. Thus, executing the step When I search

for "Playwright" triggers the call home.search("Playwright").

Finally, Figure 4c presents the GoogleHomePage class. This class
encapsulates the interactions with Google’s home page inside its
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Feature: Google Search
Scenario: Search for Playwright on Google
Given I am on Google home page
When I search for "Playwright"
Then I see results stats containing "results"

(a) Feature File.

public class GoogleSearchSteps {
private GoogleHomePage home;
/] ...
@When ("I search for {string}")
public void search(String term) {
home.search(term);

}

(b) Step Definitions File.

public class GoogleHomePage {
private final Locator searchBox;
public GoogleHomePage (Page page) {
this.searchBox = page.locator("textarealname='q']");

3

public void search(String term) {
searchBox.fill(term);
searchBox.press("Enter");

(c) System Code File.

Figure 4: The source code files of one BDD test scenario stored
in GWT.

atributtes and methods. When initialized, the class first maps the
searchBox attribute to its correponding interface element (line 4).
The instructions needed to perform the search action are imple-
mented in the search(String) method, where, it fills searchBox
with the text passed as parameter and then press the Enter key to
execute the search query (lines 6-9).

When combined, these files provide a comprehensive view of the
presented BDD test scenario. The feature file specifies the behavior
to perform a search query in a human-readable format. The step
definitions file bridges the gap between the natural language steps
and the executable code. Finally, the system code file effectively
interacts with the web page and execute the search query. This
complete structure ensures that the BDD test scenario can be fully
automated and executed as intended.

5 Use Cases and Limitations

Use Cases. GWT opens up several opportunities for research and
practical applications, as follows.

Training and Evaluating AI Models. GWT can support large lan-
guage models trainining, finetuning, and evaluation, for tasks such
as generating step definitions from feature files, or leveraging BDD
scenarios from source code or natural language descriptions.

Luciano Belo de Alcantara Janior and Joao Eduardo Montandon

Empirical Studies. Researchers can use GWT to study the adoption
of BDD in open-source projects, such as the structure, complexity,
and quality of the BDD artifacts.

Tool Development. The dataset can serve as a benchmark for devel-
oping and evaluating tools that aim to automate or assist in the
creation, maintenance, and execution of BDD test scenarios.

Limitations. As it is in an early stage, GWT has some limita-
tions. The dataset includes only open source projects collected from
GitHub, which may not reflect practices in private or enterprise-
level projects. Most test scenarios were collected from Java-based
systems, which may limit the representation of BDD practices in
other languages. Moreover, the projects were not compiled nor
executed, and the static analysis used to map step definitions and
feature files may have overlooked dynamic dependencies. Future
versions of GWT can address these limitations by including addi-
tional programming languages and improving mapping techniques.

6 Related Work

Many research works have used or proposed test-based datasets
to support the investigation of automated tests [1, 3, 6, 11, 12, 14,
15, 17]. For example, Methods2Test [17] leveraged a dataset with
several unit tests implemented in Java, and their corresponding
methods under test. Later, Abdelmadjid and Dyer [1] generated an
equivalent dataset but for the Python ecosystem. Some datasets
focused on tests’” quality issues. Just et al. [11] introduced Defects47,
a dataset with reproducible bugs in Java systems, where each bug
is accompanied by the test that exposes it. Other datasets tackle
domain-specific problems, such as GUI testing in mobile applica-
tions [15] and test library migration [3].

Recently, Meglio et al. [12] proposed a dataset containing end-to-
end tests from web applicaitons. By contrast, the GIVENWHENTHEN
dataset focused on providing a collection of full BDD test scenarios,
including the feature file, step definition file, and system code files
for each BDD scenario we extracted.

7 Next Steps

This work presents GIvENWHENTHEN (GWT), the first comprehen-
sive dataset of BDD test scenarios. At its current version, GWT
contains 2,289 BDD complete scenarios mined from 1,720 open
source projects. We intend to extend this work in two major direc-
tions. We plan to use the dataset as a benchmark for evaluating the
effectiveness of LLMs at generating BDD artifacts, i.e., automatically
generate the step definitions for a given feature file. Furthermore,
we intend to use GWT to support the development of agent-based
approaches to act on the whole BDD cycle, from writing the feature
file to executing the test scenario. Finally, we plan extend GWT
with BDD scenarios from other languages and frameworks, such
as Python (Behave), and C# (BDD-SpecFlow).
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