
GivenWhenThen: A Dataset of BDD Test Scenarios Mined from
Open Source Projects

Luciano Belo de Alcântara Júnior

luciano.alcantara@dcc.ufmg.br

Universidade Federal de Minas Gerais

Belo Horizonte, Minas Gerais, Brasil

João Eduardo Montandon

joao@dcc.ufmg.br

Universidade Federal de Minas Gerais

Belo Horizonte, Minas Gerais, Brasil

Abstract

System tests play a crucial role in ensuring the overall quality and

reliability of software systems as a whole. Still, we lack large-scale

studies and datasets focusing on investigating this type of testing,

particularly in the context of Behavior-Driven Development (BDD).

In this work we present the GivenWhenThen (GWT) dataset, a

collection of 2,289 BDD test scenarios mined from 1,720 real-world

open source projects. Each test scenario contains three artifacts: (a)

a feature file describing the BDD scenario in plain text, (b) a step

definition file responsible for implementing the steps described in

the feature file, and (c) a list of system code files used by the step

definitions. This way, we ensure to provide a dataset suitable for

training and evaluating AI models, conducting empirical studies

on BDD practices, and developing tools to automate or assist the

creation, maintenance, and execution of BDD test scenarios.

Dataset Package. The GWT dataset is publicly available at https:

//doi.org/10.5281/zenodo.17517696.

ACM Reference Format:

Luciano Belo de Alcântara Júnior and João EduardoMontandon. 2026. Given-

WhenThen: A Dataset of BDD Test Scenarios Mined from Open Source

Projects. In 23rd International Conference on Mining Software Repositories
(MSR ’26), April 13–14, 2026, Rio de Janeiro, Brazil. ACM, New York, NY,

USA, 5 pages. https://doi.org/10.1145/3793302.3793308

1 Introduction

Modern software development practices have introduced a lot of

automation to the software development lifecycle [18]. Among

them, automated testing stands out as one of the most impactful

ones. Implementing these tests have become a standard practice in

several companies, like Google [19] and Meta [2]. The benefits are

many, including the identification of early bugs, documentation of

the systems’ expected behavior, and help leveraging amoremodular

design [4, 5, 13]. Many academic works have studied the impact

of unit tests—automated tests that verifies the behavior of single

functions—in software quality [8, 9, 21]; some even leveraged well-

known datasets to perform their large-scale analysis [1, 6, 14, 17].

While unit tests have been extensively studied, investigating

system tests remains underexplored [12]. We are interested in a

particular approach to system test, known as Behavior-Driven De-

velopment (BDD) [20]. BDD focuses on describing the expected

behavior of the system in a sequence of test scenarios, written

This work is licensed under a Creative Commons Attribution 4.0 International License.

MSR ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2474-9/2026/04

https://doi.org/10.1145/3793302.3793308

Feature: Sign up

Scenario: Successful sign up
Given I have chosen to sign up
When I sign up with valid details
Then I should receive a confirmation email
And I should see a personalized message

Figure 1: Test scenario for sign-up written in Gherkin,

adapted fromWynne et al. [20].

in a semi-structured natural language format. On top of that, de-

velopers can implement these scenarios using automation testing

frameworks, such as Cucumber
1
and Behave,

2
enabling their au-

tomatic execution. This approach promotes collaboration among

developers, testers, and product owners, besides providing action-

able specifications for automated tests execution [20].

In this work, we present GivenWhenThen (GWT), a dataset of

BDD test scenarios mined from real-world open source projects.

At its current version, GWT contains 2,289 test scenarios extracted

from 1,720 GitHub repositories. We developed a heuristic that maps,

for each scenario, its corresponding step definitions—the code that

“runs” the steps described in the scenario—as well as associated

source code dependencies. As a result, the collected scenarios form

a comprehensive BDD test suite.

To the best of our knowledge,GWT is the first dataset of com-

plete BDD test scenarios. We envision several potential applica-

tions for GWT, including the development of tools to automatically

generate BDD artifacts, the analysis of BDD bad practices in open-

source projects, and the creation of benchmarks for evaluating AI

models in software testing.

Dataset Availability. The GWT dataset is publicly available at

https://doi.org/10.5281/zenodo.17517696.

2 Background

Behavior-Driven Development. Behavior-Driven Development

(BDD) is a software development approach that focuses on describ-

ing acceptance tests in a clear and understable way [20]. While

Test-Driven Development (TDD) emphasizes writing these tests

in traditional programming languages, BDD practitioners specify

them using a high-level, ubiquitous language called Gherkin. Figure

1 shows an example of a test scenario to verify the signup feature.

As we can see, tests are specified in usage scenarios; each scenario

1
https://cucumber.io/

2
https://github.com/behave/behave

https://orcid.org/0000-0002-3371-7353
https://doi.org/10.5281/zenodo.17517696
https://doi.org/10.5281/zenodo.17517696
https://doi.org/10.1145/3793302.3793308
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793302.3793308
https://doi.org/10.5281/zenodo.17517696
https://cucumber.io/
https://github.com/behave/behave


MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Luciano Belo de Alcântara Júnior and João Eduardo Montandon

1 Github Mining

+

2 Repository Validation

Projects
Dataset

Clone repositories

Filter valid Gherkin Files

Filter English Scenarios

Filter Oficial Cucumber
Library+

+

+

3 Step Definitions Extraction

Exploration Explotation

4 Heuritic Evaluation

Valid projects
Dataset

sample SSCALC

5 Integration & Refinement

Exploration Dataset

Exploitation Dataset
+

ExactMissing Excess

GivenWhenThen
Dataset

+

Projects Discovery1
2 Projects Selection

Clone
repositories

Filter valid
Feature Files

Filter English
Scenarios

Filter Oficial
Cucumber Library+

+

+

Step Definitions Extraction

Exploration Exploitation

random
sampling

4 Integration & Refinement

MatchedMissing

5 System Code Detection

ActionDatasetProcess manual
analysis

Heuristic Evaluation
Consolidated Dataset

3

Figure 2: Data Collection pipeline.

is composed of a sequence of steps describing its context, actions,

and expected outcome.

By adopting this approach, BDD handles two main challenges

in software development. First, it fulfills the communication gap

between technical and non-technical stakeholders, by using a lan-

guage that is easily understood by all team members [7]. Second,

its semi-structured language enables the use of automated tools to

execute the described behavior as automated tests [20]. In practice,

the scenarios described in BDD become a living documentation

of the system, which is always up-to-date and reflects the current

behavior of the software.

The BDD Testing Stack. To make the execution of BDD scenarios

possible, developers must implement a set of step definitions, pieces
of code that map each step in the scenario to its corresponding

implementation. Each step definition is implemented in the same

programming language as the system under test, and it calls the

methods provided by the system code to effectively execute the

actions expected for the step.

In other words, creating a dataset of comprehensive BDD test

scenarios requires at least three main components: (a) the feature
files containing the test scenarios, (b) the steps definition files re-
sponsible for implementing the steps described in the scenarios,

and (c) the system code files that contain the actual implementation

of the system under test.

3 Data Collection

We organized the data collection process into five steps, as illus-

trated in Figure 2. We detail each of these steps as follows.

1. Projects Dicovery. On October 26, 2025, we queried the GitHub
API for projects that declared Cucumber as an explicit dependency

in their configuration files. Since BDD is a practice that can be

adopted in any programming language—and Cucumber is one of

the most popular tools to support this practice—we leveraged the

programming languages which Cucumber has official support, such

as JavaScript, Java, and Ruby, and implemented search strategies

that looked for the cucumber library in the configuration files of

each language, such as package.json, pom.xml, and Gemfile. We

also filtered the repositories that contained at least one file with

the .feature extension, the standard format for feature files.

We obtained a total of 5,170 unique repositories in this initial

phase. From these projects, 2,040 were written in JavaScript, 1,258

in Ruby, and 1,029 in Java; these three languages together represent

more than 83% of the mined repositories. Thus, we decided to

proceed with only projects written in one of these three languages,

totaling 4,327 repositories. Projects implemented in other languages

(e.g., Kotlin, OCaml, Scala, Go, C++, and Lua) were excluded due to

their limited representation.

2. Projects Selection. In this step, we cloned each repository

locally and filtered them according to the following criteria:

• Valid Feature Files: We removed projects with invalid fea-

ture files, i.e., empty or commented-only files. A valid feature

file should contain at least one scenario with at least one

step (Given, When, Then, And, But).
• Features written in English: We restricted feature files

to English to ensure consistent natural-language processing

and similarity-based step matching, which would otherwise

require language-specific pipelines. Language detection was

performed using the Langdetect library.3

• Uses Official Library:We selected projects that not only

declared Cucumber as a dependency, but also used it in

their codebase. To perform this verification, we implemented

a set of regular expressions to identify import statements

and annotations related to Cucumber for Java, JavaScript,

and Ruby. For example, we searched for import statements

like import io.cucumber.* and annotations like @Given,
@When, and @Then in Java projects. In JavaScript projects

we looked for require(’cucumber’) or import { Given,
When, Then } from ’cucumber’ statements.

After filtering, 1,720 of 4,327 repositories remained, excluding 655

invalid-feature, 400 non-English, and 1,552 non-official Cucumber

projects, totaling 7,872 valid feature files.

3. Step Definitions Extraction. Step definitions are mapped to

feature steps using literal strings or regular expressions [20]. In

other words, both are not structurally linked, which makes the pro-

cedure to map themmore challenging. We implemented a matching

procedure to link, for each feature file, the step definition file used to

implement its steps. This procedure adopts two different strategies

to perform this match: Exploitation and Exploration [10, 16].

Exploitation Match. This heuristic matches feature steps to step def-

initions based only on properties we consider are highly indicative

of a correct match, such as exact text match and explicit feature

reference. The goal is to maximize the detection of correct pairs,

3
https://pypi.org/project/langdetect/

https://pypi.org/project/langdetect/


GivenWhenThen: A Dataset of BDD Test Scenarios Mined from Open Source Projects MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

even if that means missing some of them. This strategy detected

1,577 tuples of feature steps and their corresponding step defini-

tions. We randomly selected a sample of 309 tuples (95% confidence

level and 5% margin of error) for manual validation, and verified

that 299 were correct, resulting in a precision of 97%.

Exploration Match. This strategy adopts a wider set of properties to
map feature steps to step definitions, including filenamematch, step

annotation match, etc. The goal is to favor the detection of weakly

connected pairs, i.e., pairs that are defined with different naming

conventions, more common in JavaScript and Ruby projects. This

heuristic detected 3,221 tuples of feature steps and definitions. We

randomly selected a sample of 343 tuples (95% confidence level and

5% margin of error) for manual validation, and verified that 323

were correct, resulting in a precision of 94%.

4. Integration and Refinement. After obtaining the results from

both heuristics, we merged them into a single dataset. As 1,051 pairs

were identified by both heuristics, the integrated dataset contained

3,747 unique pairs of feature files and their corresponding steps

definition files. We also detected that 1,458 feature files had no

step definitions mapped to them; we removed these files from the

dataset. Finally, 348 feature files had their features steps partially

mapped, i.e., some steps were not matched to any step definition.

In this case, we removed the test scenarios that contained at least

one unmapped step, keeping only those scenarios that had all their

steps mapped to step definitions.

5. System Code Detection. In this last step, we obtained the sys-

tem code files used by each step definition file extracted previously.

For this, we implemented a static analyzer that inspects the source

code of each step definition file and identifies the project files it

depends on. Specifically, we leveraged all import statements that

refer to source code files in the project—external dependencies were

ignored—and include them as part of the system code used by the

step definition file. At the end of this process, we obtained a total of

2,289 BDD test scenarios, each paired with its corresponding step

definition file and related system code files.

4 The GivenWhenThen Dataset

The GWT dataset contains 2,289 complete BDD test scenarios. Most

come from Java projects, since it is the language used in 1,755

scenarios (76%); JavaScript and Ruby are used in 380 (17%) and 154

(7%) scenarios, respectively.

4.1 Dataset Structure

The GWT dataset stores its BDD scenarios as JSON objects. Figure

3 shows one as example. Each instance contains basic metadata

about the test scenario, e.g., its language, repository name, and the

path to important source files. The object also includes the content

of its feature file, steps definition file, and the System Code files the
scenario depends upon. These properties are detailed below.

• repository: String that identifies the project from where

the test scenario was extracted. It allows dataset users to

traceback the project responsible for creating the test.

• language: String containing the programming language

used to implement the step definitions and system code files

used in the test scenario.

1 {
2 "repository ": "Test -Architect/playwright -java -bdd -sample",
3 "language ": "java",
4 "normalized_repo_path ": "<path >/test -architect_playwright -java -

bdd -sample",
5 "feature_file ": "src/test/resources/features/google_search.

feature",
6 "feature_content ": "Scenario: Search for Playwright on Google

Given I am...",
7 "step_definitions_file ": "<path >/steps/GoogleSearchSteps.java",
8 "step_definitions_content ": "... public class GoogleSearchSteps

{ private ...",
9 "system_code_files ": [
10 {
11 "name": "GoogleHomePage.java",
12 "path": "<path >/ framework/pages/GoogleHomePage.java",
13 "content ": "... public class GoogleHomePage { private final

Page page ..."
14 }
15 ]
16 }

Figure 3: A JSON example containing a BDD test scenario

stored in GWT.

• normalized_repo_path: Path leading to the project’s root

when cloned locally. It helps dataset users to direct access

the source code files.

• feature_content and feature_file: The path and the full
content of the feature file used in the test scenario.

• step_definitions_content and step_definitions_fi-
le: The path and the full content of the step definitions file
used in the test scenario.

• system_code_files: A list of system code files the scenario
depends upon. Each element maps the name of the system

code file, its file’s path, and the full content of the file.

4.2 A Closer Look at the Scenarios

Figure 4 shows the snippets of the feature file, step definitions file,
and the system code file extracted from the scenario presented at

Figure 3. Due to space constraints, we ommitted the full content of

these files.

Figure 4a lists the feature file, written in plain text using the

Gherkin syntax. Lines 1–2 declares the feature and test scenario

of this example, which is to perform a Google search with the

“Playwright” word. Lines 3–5 describe the three steps needed for

a user to execute this scenario. It first opens Google’s home page,

then searches for the “Playwright” word. The last step checks if the

returned page has the “results” word. If read in order, these steps

outline the actions a user should take to execute this test scenario.

Figure 4b provides a snippet of the step definitions file. The
GoogleSearchSteps class contains a home attribute, of the type

GoogleHomePage. Originally this class defines all steps, but we fo-

cus on the second one: When I search for "Playwright". This step is

linked to the search(String)method (lines 5–7) through the @When("I

search for {string}") annotation (line 4). The "{string}" placeholder

maps the "Playwright" text to the term parameter. Inside the method

(line 6), home.search(term) command calls the search()method

in the GoogleHomePage class. Thus, executing the step When I search

for "Playwright" triggers the call home.search("Playwright").

Finally, Figure 4c presents the GoogleHomePage class. This class

encapsulates the interactions with Google’s home page inside its



MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Luciano Belo de Alcântara Júnior and João Eduardo Montandon

1 Feature: Google Search
2 Scenario: Search for Playwright on Google
3 Given I am on Google home page
4 When I search for "Playwright"
5 Then I see results stats containing "results"

(a) Feature File.

1 public class GoogleSearchSteps {
2 private GoogleHomePage home;
3 // ...
4 @When("I search for {string}")
5 public void search(String term) {
6 home.search(term);
7 }
8 }

(b) Step Definitions File.

1 public class GoogleHomePage {
2 private final Locator searchBox;
3 public GoogleHomePage(Page page) {
4 this.searchBox = page.locator("textarea[name='q']");
5 }
6 public void search(String term) {
7 searchBox.fill(term);
8 searchBox.press("Enter");
9 }
10 }

(c) System Code File.

Figure 4: The source code files of one BDD test scenario stored

in GWT.

atributtes and methods. When initialized, the class first maps the

searchBox attribute to its correponding interface element (line 4).

The instructions needed to perform the search action are imple-

mented in the search(String) method, where, it fills searchBox
with the text passed as parameter and then press the Enter key to

execute the search query (lines 6–9).

When combined, these files provide a comprehensive view of the

presented BDD test scenario. The feature file specifies the behavior
to perform a search query in a human-readable format. The step
definitions file bridges the gap between the natural language steps

and the executable code. Finally, the system code file effectively
interacts with the web page and execute the search query. This

complete structure ensures that the BDD test scenario can be fully

automated and executed as intended.

5 Use Cases and Limitations

Use Cases. GWT opens up several opportunities for research and

practical applications, as follows.

Training and Evaluating AI Models. GWT can support large lan-

guage models trainining, finetuning, and evaluation, for tasks such

as generating step definitions from feature files, or leveraging BDD

scenarios from source code or natural language descriptions.

Empirical Studies. Researchers can use GWT to study the adoption

of BDD in open-source projects, such as the structure, complexity,

and quality of the BDD artifacts.

Tool Development. The dataset can serve as a benchmark for devel-

oping and evaluating tools that aim to automate or assist in the

creation, maintenance, and execution of BDD test scenarios.

Limitations. As it is in an early stage, GWT has some limita-

tions. The dataset includes only open source projects collected from

GitHub, which may not reflect practices in private or enterprise-

level projects. Most test scenarios were collected from Java-based

systems, which may limit the representation of BDD practices in

other languages. Moreover, the projects were not compiled nor

executed, and the static analysis used to map step definitions and

feature files may have overlooked dynamic dependencies. Future

versions of GWT can address these limitations by including addi-

tional programming languages and improving mapping techniques.

6 Related Work

Many research works have used or proposed test-based datasets

to support the investigation of automated tests [1, 3, 6, 11, 12, 14,

15, 17]. For example, Methods2Test [17] leveraged a dataset with

several unit tests implemented in Java, and their corresponding

methods under test. Later, Abdelmadjid and Dyer [1] generated an

equivalent dataset but for the Python ecosystem. Some datasets

focused on tests’ quality issues. Just et al. [11] introduced Defects4J,
a dataset with reproducible bugs in Java systems, where each bug

is accompanied by the test that exposes it. Other datasets tackle

domain-specific problems, such as GUI testing in mobile applica-

tions [15] and test library migration [3].

Recently, Meglio et al. [12] proposed a dataset containing end-to-

end tests from web applicaitons. By contrast, the GivenWhenThen

dataset focused on providing a collection of full BDD test scenarios,
including the feature file, step definition file, and system code files
for each BDD scenario we extracted.

7 Next Steps

This work presents GivenWhenThen (GWT), the first comprehen-

sive dataset of BDD test scenarios. At its current version, GWT

contains 2,289 BDD complete scenarios mined from 1,720 open

source projects. We intend to extend this work in two major direc-

tions. We plan to use the dataset as a benchmark for evaluating the

effectiveness of LLMs at generating BDD artifacts, i.e., automatically

generate the step definitions for a given feature file. Furthermore,

we intend to use GWT to support the development of agent-based

approaches to act on the whole BDD cycle, from writing the feature

file to executing the test scenario. Finally, we plan extend GWT

with BDD scenarios from other languages and frameworks, such

as Python (Behave), and C# (BDD-SpecFlow).

Acknowledgments

This work was partially supported by INES.IA (National Institute of

Science and Technology for Software Engineering Based on and for

Artificial Intelligence) www.ines.org.br, CNPq grant 408817/2024-0.

It was also supported by grants from CNPq (403304/2025-3) and by

FAPEMIG (APQ-02419-23).

www.ines.org.br


GivenWhenThen: A Dataset of BDD Test Scenarios Mined from Open Source Projects MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

References

[1] Idriss Abdelmadjid and Robert Dyer. 2025. pyMethods2Test: A Dataset of Python

Tests Mapped to Focal Methods. In 22nd International Conference on Mining
Software Repositories (MSR). 846–850.

[2] Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova, Beliz Gokkaya, Mark

Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang.

2024. Automated Unit Test Improvement Using Large Language Models at Meta.

In 32nd ACM Symposium on the Foundations of Software Engineering (FSE). ACM,

Porto de Galinhas, Brazil, 1–12.

[3] Altino Alves and Andre Hora. 2025. TestMigrationsInPy: A Dataset of Test

Migrations from Unittest to Pytest. In Mining Software Repositories (MSR): Data
and Tools Showcase Track. 1–5.

[4] Kent Beck. 2003. Test Driven Development: By Example. Addison-Wesley Profes-

sional, Boston.

[5] Pedro Calais and Lissa Franzini. 2023. Test-Driven Development Benefits Beyond

Design Quality: Flow State and Developer Experience. In 45th International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
IEEE, Melbourne, Australia, 106–111.

[6] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jian-

wei Yin. 2024. ChatUniTest: A Framework for LLM-Based Test Generation. In

ACM International Conference on the Foundations of Software Engineering (FSE).
Association for Computing Machinery, Porto de Galinhas, Brazil, 1–5.

[7] Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, Boston, MA, USA.

[8] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.

2015. Does Automated Unit Test Generation Really Help Software Testers? A

Controlled Empirical Study. ACM Trans. Softw. Eng. Methodol. 24, 4 (Sept. 2015),
23:1–23:49.

[9] Vahid Garousi, Michael Felderer, Marco Kuhrmann, Kadir Herkiloğlu, and Sigrid

Eldh. 2020. Exploring the Industry’s Challenges in Software Testing: An Empirical

Study. Journal of Software: Evolution and Process 32, 8 (2020), e2251.
[10] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2013. Balancing Explo-

ration and Exploitation in Listwise and Pairwise Online Learning to Rank for

Information Retrieval. Information Retrieval 16, 1 (2013), 63–90.
[11] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database of

Existing Faults to Enable Controlled Testing Studies for Java Programs. In 2014
International Symposium on Software Testing and Analysis (ISSTA). 437–440.

[12] Sergio Di Meglio, Luigi Libero Lucio Starace, Valeria Pontillo, Ruben Opdebeeck,

Coen De Roover, and Sergio Di Martino. 2025. E2EGit: A Dataset of End-to-End

Web Tests in Open Source Projects. In 22nd International Conference on Mining
Software Repositories (MSR). 836–840.

[13] John Ousterhout. 2018. A Philosophy of Software Design. Yaknyam Press, Palo

Alto, CA.

[14] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2024. An Empirical

Evaluation of Using Large Language Models for Automated Unit Test Generation.

IEEE Transactions on Software Engineering 50, 1 (Jan. 2024), 85–105.

[15] Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking Automated GUI

Testing for Android against Real-World Bugs. In 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). 119–130.

[16] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (2nd ed.). MIT Press, Cambridge, MA.

[17] Michele Tufano, Shao Kun Deng, Neel Sundaresan, and Alexey Svyatkovskiy.

2022. Methods2Test: A Dataset of Focal Methods Mapped to Test Cases. In 19th
International Conference on Mining Software Repositories (MSR). 299–303.

[18] Marco Tulio Valente. 2024. Software Engineering: A Modern Approach. Leanpub,
Online.

[19] Titus Winters, Tom Manshreck, and Hyrum Wright. 2020. Software Engineering
at Google: Lessons Learned from Programming Over Time (1st edition ed.). O’Reilly

Media, Sebastopol, CA, USA.

[20] Matt Wynne, Aslak Hellesoy, and Steve Tooke. 2017. The Cucumber Book:
Behaviour-Driven Development for Testers and Developers. Pragmatic Bookshelf,

Raleigh, NC, USA.

[21] Tao Xie, Nikolai Tillmann, and Pratap Lakshman. 2016. Advances in Unit Testing:

Theory and Practice. In 38th International Conference on Software Engineering
Companion (ICSE). ACM, Austin, TX, USA, 904–905.


	Abstract
	1 Introduction
	2 Background
	3 Data Collection
	4 The GivenWhenThen Dataset
	4.1 Dataset Structure
	4.2 A Closer Look at the Scenarios

	5 Use Cases and Limitations
	6 Related Work
	7 Next Steps
	Acknowledgments
	References

