HyperSQL Utilities Guide

Edited by The HSQLB Development Group, Blaine Simpson, and Fred Toussi

HyperS@L

HyperSQL Utilities Guide
by The HSQLB Development Group, Blaine Simpson, and Fred Toussi

$Revision: 3539 $
Published $Date: 2010-03-17 11:47:21 -0400 (Wed, 17 Mar 2010) $

Copyright 2002-2009 The HSQL Development Group. Permission is granted to distribute this document without any alteration under the terms
of the HSQL DB license.

HyperS@L

HyperS@L

Table of Contents

(= = o PP PPPTPPPPPPTRTPPIN viii
Available formats for this dOCUMENTiiiiiiii e e et e viii
TS o | I o | TP SPP PR 1
Purpose, Coverage, Changes in BENAVIONoiciiiiiiiiiiiii et 1
Platforms and SQITOOI VEISIONS COVEIEAcocuuiiiiiiii ettt e 2
Recent FUNCLONal CRANQEScooouiiiiiiii et e e e e e e 3

NEOW FEBIUMNES ... iee ittt et et e et et e e e e et e e e eees 4

The Bare IMINIMUIM ..oe ettt ettt ettt e e et et e e ettt e et ettt e e e ea b reeeenbnaeaeenbaaaaee 5
EMDEAUING .o 7
NON-AiSPlayalle TYPES ..o ettt e e 7
DESKEOP SNOMCULS ...t eeeettie ettt ettt e ettt e e ettt e ettt s e e et et s e e et et e et e et neeeesbaneeeennnnaeeees 7
L0BdiNg SAMPIE QELAevuneiiiiei ettt et ettt e enaas 8
Satisfying SglTool's CLASSPATH REQUITEMENESouuuiiiiiiiieieei ettt e e e eeees 8
Accessing older HSQLDB Databases With SQITOOIcoovvuiiiiiiiiii e 8
App-specific Classes, Embedding, and non-HyperSQL Databasescccevveeeiiiiiieiiiiineeiiiiinnnn. 9
Distributing SOITOO! With YOUIr APPS ...ttt e e e e e e e eees 10
SOITOON CHENE PCS .ottt e et e et e e e et e e e e aa s 10

RC File AUthENtiCaliON SEIUPvuiieiiiiiee ittt e e et e e et eeebees 10
SWILChING DEEA SOUICES ... ciiiii ettt ettt e et e et e et e e e et eeeera s 13
Using Inline RC AULNENEICALON ... cieieieieii ettt ettt e e e e ene s 14
(oo o] 0o H TSP UPPPTTRPPPIN 14
INEEIBCHIVE USBIE ..oetiiiiiiii ettt ettt ettt e ettt e ettt e e et e bt e et e et n e e e e et e e e entnaaees 14
SqITool Command-Line EAItiNGcoeureniiiiiiiei e e 15
16000710020 To B Y/ o= PP SO PP PSPPPTTR 15
160007100200 B Y/ o= PSP P PP PSPPPTRRN 16
SPECIAl COMMEANAS ...ttt ettt et e et e e et et e et e e et e b e e e ene s 17
Edit Buffer / History COMMANGScoouuiiiiiiieeiii ettt e e e e 20
PL COMIMBNGAS ... eeeeti ettt ettt ettt ettt ettt e e et et e e et et e e et et e e e e et e e et et e e e e et e e e e eba s 22
DV AADIE s 23
Storing and retrieving binary filES ..o 23
ComMEANG HISIOMY ...ttt ettt e e e e e e eaaas 24

Shell scripting and command-line PIPINGccvveneiirtieiii e 24
Emulating NON-INtEraCtive MOOEcoeeuiieiiii e eeees 24

[N o g 01 = o A= PRSP UPPPTI 24
Giving SQL 0N the Command LiNEcoeeuuiiiiiiei e 25

SOL FlES ettt ettt et e e e e et bbb e e e e e e e aab s 25
Piping @and Shell SCIIPLING ...oeeveiiiiii et e e e e eneas 27
Optimally Compatible SQL FilES ... e e 28
10701001007 01T PP 28
Special Commands and Edit Buffer Commandsin SQL Fles ... 28

F U 10 047 (o] E PP P PP PR 30
Getting Interactive Functionality with SQL FileS ..o 30
CharaCter ENCOGINGueeeetiieeiii ettt ettt e et e et et e e e et e et et e e e e b eeenea s 30
Generating Text oF HTIML REPOISceuuiieiiiiii ettt ettt e e e e enaens 30
SOITOOI Procedural LANQUATEeeeeiieieiiie ettt ettt et e et e et e e e et eeeana s 31
VL = o =SSOSO PP TR PPPPPTRPPPIN 32
Y=ot o1 PPN 32

L S 111 o PP UPPPT 33
LOGiCal EXPIESSIONS ...eeitiieiiiitiee ittt e ettt ettt e ettt e et et e et et e e et et e e e et e e e et e e e ena e eeen 33
FIOW CONEIOL ..ttt e e et e e e e et e e e 34

= 0110 = TP PTTRPPPPPTTN 34

HyperS@L HyperSQL Utilities Guide

L0111 01 (1 o [36

L 212U 36

0 36

L T 1Y e [PP 36
SQL/PSM, SQL/IRT, @Nd PL/SQL ooevuiiiiieeeiet et e e e e e e s e e e e e e e e st s e e e e e e e eaanennn s 37
Delimiter-Separated-Value Imports and EXPOItSiiiiiiiiiiiciie e 39
Simple DSV exports and imports using default SEttingscccvveiiiiiiii i, 41

Specifying QUENES aNd OPLIONSiiviiiii e e e e e e e e e e e r e e aa s 42

L T =S (] g0 S| I oo 43

b 1= o o o T 1= A 11 TP 45
I DT = o= s AV o T PP 47
2T T=: N1 e L8 o o) o PR 47

F U (R 1= =0 = =P 47

P 10047 ol @Xe g1 oo o NS 48

O T = P 48
Using the current DatabaseManagers with an older HSQLDB distribution.c..ccooeiiiiiiiieinennnn, 48
DatabaseManagerSWing as an APPIELiiriii i 49

O = 10 = oo PSP 51
2T T=: N1 e L8 o o] o P 51

A HYPEISQL FlE LiNKS ..iiiiiiiiici it e e e e e e e e e e e e et e e et e e et e e e aa e e e eeaans 52

HyperS@L

List of Tables

1. Available formats of this document

Vi

HyperS@L

List of Examples

L1 SAMPIE RC Bl oottt e ettt e ettt e ettt e et e ab e e e eaa e aeee 10
1.2. Inserting binary data into database from afile ... 24
1.3. Downloading binary data from database t0 afilecoouiiiiiiiiiii 24
1.4, Piping iNPUL iNEO SOITOOI ...eeeeiiiiii ettt ettt ettt e e ettt e e e e e e e 27
1.5. Simple SQL file USING PL ...t eaaas 33
1.6. SQL File showing use of MOSt PL fEAIUIESuuiiiiiiiiieiiii e e 35
1.7. Interactive RaW MOOE EXEMPIEttt e et e e et e e e e e e e 37
1.8, PLISQL EXBMPIE ...ttt ettt ettt ettt e s 38
1.9, SQL/IRT EXBMPIE .ttt ettt et et e et e e 39
1.10. SQL/PSM EXAMPIE .eeeiiiiie ettt 39
1.11. DSV EXPOrt EXBMPIE ...ttt ettt 41
1.12. DSV IMPOIt EXBMPIE ...t e e et e 41
1.13. DSV Export of an Arbitrary SELECT SEAEMENT ...cevvuiiiiiiiiieieiii et 42
1.14. Sample DSV headerswitCh SEtliNgSiiiriiieiii e 43
1.15. DSV targettabl@ SEING ...ccovuiiiiiie e 43

Vii

HyperS@L

Preface

If you notice any mistakes in this document, please email the author listed at the beginning of the chapter. If you
have problems with the procedures themselves, please use the HSQL DB support facilities which are listed at http://
hsgldb.org/web/hsgl Support.html .

Available formats for this document

This document is available in severa formats.

Y ou may be reading this document right now at http://hsgldb.org/doc/2.0, or in adistribution somewhere else. | hereby
call the document distribution from which you are reading this, your current distro.

http://hsgldb.org/doc/2.0 hosts the latest production versions of all available formats. If you want a different format of
the same version of the document you are reading now, then you should try your current distro. If you want the latest
production version, you should try http://hsgldb.org/doc/2.0.

Sometimes, distributions other than http://hsgldb.org/doc/2.0 do not host all available formats. So, if you can't access
the format that you want in your current distro, you have no choice but to use the newest production version at http://
hsgldb.org/doc/2.0.

Table 1. Available for mats of this document

format your distro at http://hsgldb.org/doc/2.0

Chunked HTML index.html http://hsgldb.org/doc/2.0/util-guide/
All-in-oneHTML | util-guide.html http://hsqldb.org/doc/2.0/util-guide/util-guide.html
PDF util-guide.pdf http://hsgldb.org/doc/2.0/util-guide/util -gui de. pdf

If you are reading this document now with a standalone PDF reader, the your distro links may not work.

viii

http://hsqldb.org/web/hsqlSupport.html
http://hsqldb.org/web/hsqlSupport.html
index.html
http://hsqldb.org/doc/2.0/util-guide/
util-guide.html
http://hsqldb.org/doc/2.0/util-guide/util-guide.html
http://hsqldb.org/doc/2.0/util-guide/util-guide.pdf

HyperS@L

Chapter 1. SqlTool

SqlTool Manual

Blaine Simpson, HSQL Development Group

$Revision: 3607 $
Published $Date: 2010-06-01 07:18:26 -0400 (Tue, 01 Jun 2010) $

Purpose, Coverage, Changes in Behavior

Note

Due to many important improvements to SglTool, both in terms of stability and features, all users of
SqlTool are advised to use the latest version of SglTool, even if your database instances run with an
older HSQLDB version. How to do this is documented in the Accessing older HSQLDB Databases
with SglTool section below.

This document explains how to use SglTool, the main purpose of which is to read your SQL text file or stdin, and
execute the SQL commands therein against a JDBC database. There are also a great number of features to facilitate
both interactive use and automation. The following paragraphs explain in ageneral way why Sgl Tool isbetter than any
existing tool for text-mode interactive SQL work, and for automated SQL tasks. Two important benefitswhich SglTool
shares with other pure Java JDBC tools is that users can use a consistent interface and syntax to interact with a huge
variety of databases-- any database which supports JDBC; plus the tool itself runs on any Java platform. Instead of
usingi sql for Sybase, psql for Postgresgl, Sgl * pl us for Oracle, etc., you canuse Sgl Tool for all of them. Asfar as
| know, SglTool isthe only production-ready, pure Java, command-line, generic JDBC client. Several databases come
with a command-line client with limited JDBC abilities (usually designed for use with just their specific database).

I mportant
!

The SglTool commands and settings are intuitive once you are famililar with the usage idioms. This
Guide does not attempt to list every SglTool command and option available. When you want to know
what Sgl Tool commands or options are available for a specific purpose, you need to list the commands of
the appropriate type with the relevant "?* command. For example, as explained below, to see al Specia
commands, you would run\ ?; and to see all DSV export options, you run \x?.

SqlTool is purposefully not a Gui tool like Toad or DatabaseManager. There are many use cases where a Gui SQL
tool would be better. Where automation is involved in any way, you really need a text client to at least test things
properly and usualy to prototype and try things out. A command-line tool is really better for executing SQL scripts,
any form of automation, direct-to-file fetching, and remote client usage. To clarify thislast, if you haveto do your SQL
client work on awork server on the other side of a VPN connection, you will quickly appreciate the speed difference
between text data transmission and graphical datatransmission, even if using VNC or Remote Console. Another case
would be where you are doing some repetitive or very structured work where variables or language features would
be useful. Gui proponents may disagree with me, but scripting (of any sort) is more efficient than repetitive copy &
pasting with a Gui editor. SglTool starts up very quickly, and it takes up atiny fraction of the RAM required to run
acomparably complex Gui like Toad.

SqlTool is superior for interactive use because over many years it has evolved lots of features proven to be efficient
for day-to-day use. Four concise help commands (\?, :?, *?, and /?) list all available commands of the corresponding
type. SqlTool doesn't support up-arrow or other OOB escapes (due to basic Java I/O limitations), but it more than
makes up for this limitation with macros, user variables, command-line history and recall, and command-line editing
with extended Perl/Java regular expressions. The \d commands deliver JDBC metadata information as consistently

HyperS@L SqiTool

as possible (in several cases, database-specific work-arounds are used to obtain the underlying data even though the
database doesn't provide metadata according to the JDBC specs). Unlike server-side language features, the same fea
ture set works for any database server. Database access details may be supplied on the command line, but day-to-
day users will want to centralize JDBC connection details into a single, protected RC file. You can put connection
details (username, password, URL, and other optional settings) for scores of target databases into your RC file, then
connect to any of them whenever you want by just giving SglTool the ID ("urlid") for that database. When you Execute
Sl Tool interactively, it behaves by default exactly asyou would want it to. If errors occur, you are given specific error
messages and you can decide whether to roll back your session. Y ou can easily change this behavior to auto-commit,
exit-upon-error, etc., for the current session or for al interactive invocations. Y ou can import or export delimiter-sep-
arated-valuefiles. If you need to run a specific statement repeatedly, perhaps changing the WHERE clause each time,
it isvery simpleto define a macro.

When you Execute Sgl Tool with a SQL script, it also behaves by default exactly as you would want it to. If any error
is encountered, the connection will be rolled back, then SglTool will exit with an error exit value. If you wish, you
can detect and handle error (or other) conditions yourself. For scripts expected to produce errors (like many scripts
provided by database vendors), you can have SglTool continue-upon-error. For SQL script-writers, you will have
access to portable scripting features which you've had to live without until now. You can use variables set on the
command line or in your script. You can handle specific errors based on the output of SQL commands or of your
variables. You can chain SQL scripts, invoke external programs, dump data to files, use prepared statements, Finaly,
you have a procedural language withi f , f or each, whi | e, cont i nue, and br eak statements.

Platforms and SqlTool versions covered

SqlTool runson any Java 1.5 or later platform. | know that Sl Tool workswell with Sun and OpenJDK JVMs. | haven't
run other vendors JVMs in years (IBM, JRockit, etc.). As my use with OpenJDK provesthat | don't depend on Sun-
specific classes, | expect it to work well with other (1.5-compatible) Javaimplementations.

SqlTool no longer writes any files without being explicitly instructed to. Therefore, it should work fine on read-only
systems, and you'll never have orphaned temp files left around.

The command-line examples in this chapter work as given on all platforms (if you substitute in a normalized path
in place of $HSQLDB_HOME), except where noted otherwise. When doing any significant command-line work on
Windows (especially shell scripting), you're better off to completely avoid paths with spaces or funny characters. If
you can't avoid it, use double-quotes and expect problems. As with any Java program, file or directory paths on the
command line after "java" can use forward slashes instead of back slashes (this goes for System properties and the
CLASSPATH variable too). | use forward slashes because they can be used consistently, and | don't have to contort
my fingers to type them:).

If you are using SglTool from a HyperSQL distribution of version 1.8.x or earlier, you should use the documenta-
tion with that distribution, because this manual documents many new features, several significant changes to interac-
tive-only commands, and a few changes effecting backwards-compatibility (see next section about that). This docu-
ment is now updated for the current versions of SglTool and SqlFile at the time | am writing this (versions 3406 and
3604 correspondingly-- SglFileis the class which actually processes the SQL content for SglTool). Therefore, if you
areusing aversion of SglTool or SqlFile that is more than a couple revisions greater, you should find a newer version
of thisdocument. (Theimprecision is due to content-independent revision increments at build time, and the likelihood
of one or two behavior-independent bug fixes after public releases). The startup banner will report both versions when
you run SglTool interactively. (Dotted version numbers of SglTool and SqlFile definitely indicate ancient versions).

This guide covers SgiTool as bundled with HSQLDB after 1.8.x. *

1 To reduce the time I will need to spend maintaining this document, in this chapter | am giving the path to the sanpl e directory asit isin
HyperSQL 2.0.x distributions, namely, HSQLDB_HOVE/ sanpl e. Users of HSQLDB before 2.0.x should translate these sample directory paths
to use HSQLDB_HOME/ sr ¢/ or g/ hsql db/ sanpl e/

HyperS@L SqiTool

Recent Functional Changes

This section lists changes to Sgl Tool since the last major rel ease of HSQL DB which may effect the portability of SQL
scripts. For this revision of this document, this list consists of script-impacting changes made to SqlTool after the
final 1.8.0.0 HSQLDB release. I'm specifically not listing changes to interactive(:)-only commands (with one legacy
exception which is listed below),i since these commands can't be used in SQL scripts; and I'm specifically not listing
backwards-compatibl e feature additions and enhancements. The reason for limiting the change list to only portability-
impacting changesisthat alist of all enhancements since just 1.8.1.1 would be pages long.

SglTool is now bundled in the supplied file sgl t ool . j ar instead of hsql db. j ar. Therefore, the usage
idiom java -jar .../hsqgldb.jar has changed to java -jar .../sgltool.jar. (depend-
ing on where you get your HyperSQL resources from, these files may be named with a version label, like
sqltool-1.2.3.4.jar).

The package of SglTool and support classes has been changed from org. hsqgl db.util to
org. hsql db. cndl i ne. Thereisnochangetoj ava -j ar. .. command-lines, but youwill need to changethe
package namein SglTool command lines of theformj ava. .. org. hsql db. . . . Thislater usageis necessary
if you need to modify the classpath for any reason, such as for embedding, to use alogging config file, or to use
anon-HSQLDB JDBC driver.

SqlTool now consistently outputs \rin line breaks when on \r\n-linebreak platforms, like Windows. This includes
output written to stdout, \w files, and \o files.

Timetypevaluesare always output with the date aswell asthetime. Thiswasrequired in order to produce consistent
output for the wildly varying formats provided by different database vendors.

DSV input now takes JDBC Timestamp format with date and optionally time of day.

The command ":;" isnow strictly an interactive command. If you want to repeat acommand in an SQL scripts, just
repeat the exact text of the command. Non-interactive use now has no dependency on command history.

The command ":w" has replace the command \w. Unlike writing "output” to afile with \w, :w is used to write SQL
"commands’, and thisis an interactive feature.

Shell scripts using raw mode (e.g. PL/SQL scripts) must terminate the raw code with aline containing ".;", which
will also send the code to the database for execution. (The old "." command has been changed to ":." to make it very
clear that that command is now an interactive command).

Y ou must use raw mode to chunk SQL statements to your DB server. |.e., with previous versions of SglTool, SQL
statements were only sent to the DB server when a semi-colon is read at the end of aline. SglTool now has amuch
more powerful parser, and individual SQL statements are sent to the DB server as soon as they are terminated with
a semi-colon, regardless of line delimiters. Therefore, to send multiple SQL statements to the DB server in one
transmittal, you must use raw mode.

The --sgl argument will never automatically append a semicolon to the text you provide. If you want to execute a
command ending with a semi-- then type a semi.

Default encoding used is now the platform's default encoding instead of US- ASCI | .

To minimize side-effects (especialy for instance-based programmatic usage), the only System properties used are
those predefined by the VM (incl. j avax. net . ssl . *. Properties of theformsqgl fil e. * and sql t ool . *
are specifically no longer supported. (Lessinvasive configuration systems are provided to serve the same purposes).

SqlTool no longer displays the usage banner if none of inline-RC, urlid, SQL files are supplied, because that now
starts up SqlTool with no JDBC Connection. To see the usage banner, use the - - hel p command-line switch.

HyperS@L SqiTool

» Requires Java 1.5 in order to build or run.

» Update and row counts are not displayed in non-interactive mode. The count values are readily availablein aformat
more suitable for scripting uses through PL variables (likewith*{ ?} or* VARNAME _).

Although it doesn't effect scripts, | will mention a significant recent change to interactive commands which could
confuse existing power users. Special and PL commands are now stored to the edit buffer and to command history,
so they can be recalled and edited just like SQL commands. Now, al commands other than edit/history : commands
are stored to the buffer and history.

New Features

* DSV column and row delimiters are now specified separately for input and output. This allows the input delimiters
to be regular expressions. (Which in turn, allows for the next item).

» The new default DSM import row delimiter works for standard UNIX, Windows, Mac lines. This makes DSV files
portable across these platforms. (If using a change control system like Subversion, CV'S, or whatever, you can now
change control your .dsv files as native ASCI| files).

e Both/* This kind */ and-- This kind of comments are now handled generally and intuitively, in
SQL statements and in Sgl Tool -specific commands. (There were previously several limitations to where they could
be used).

At the cost of adding another command type, command aliases were replaced by / macros. Usage (i.e., execution)
is basically the same, but the new macros are much easier to define and list; and macros can be used for both PL
and Special commands now (not just for SQL statements).

* Reports Transaction Isolation level and JDBC Connection Read/Write or Read-Only state connection or request
(with \j).

» New \t command to report database exection duration times.
* New \v command to set or report the Connection's Transaction Isolation LeVel.

« \d object filter commandsnow usethefilter asaregular expression, where possible, and filter may have
optional prefix / to mean to match the filter against all output (not just the object name).

* \dX filter commandsnow usethefilter asaregular expression, where possible.
* New *DSV_TRI M _ALL to automatically handle import of data which isboth positional and character-delimited.

* New \I command to log user-specified messageswith j ava. uti | . | oggi ng or Log4j logging facility. Nothing
at al iswritten directly to stderr.

 All warnings and messages now use logging facility. This alows for declarative fine control of what gets logged
and where the messages go to, as well as alowing for embedded apps to manage SqglTool apps in an integrated
fashion with other app log entries.

* New *DSV_RECORDS PER_COMMIT setting to support user-specified tuning of large DSV imports.
 (Optional) DSV log report can be customized with style sheets.

» Youcaninteractively (orin SQL scripts) switch JDBC datasources (with\j). Sql Tool can be started and used without
any data source, though you'll obviously need to connect to a data source before issuing SQL commands.

» Array types are now supported, including in DSV imports and exports, with the exception that DSV imports do not
support element values containing commas.

HyperS@L SqiTool

The Bare Minimum

The Bare Minimum You Need to Know to Run SqlTool

. Warning
If you are using an Oracle database server, it will commit your current transaction if you cleanly discon-

nect, regardless of whether you have set auto-commit or not. Thiswill occur if you exit SglTool (or any
other client) in the normal way (as opposed to killing the process or using Ctrl-C, etc.). Thisis mentioned
in this section only for brevity, so | don't need to mention it in the main text in the many places where
auto-commit is discussed. This behavior has nothing to do with SglTool. It isaquirk of Oracle.

If you want to use Sgl Tool, then you either have an SQL text file, or you want to interactively typein SQL commands.
If neither case applies to you, then you are probably looking at the wrong program.

Procedure1.1. Torun SgiToal...

1

Copy thefile sanpl e/sqltool.rc Lof your HyperSQL distribution to your home directory and secure
accesstoit if your computer isaccessibleto anybody else (most likely from the network). Thisfilewill work as-is
for aMemory Only database instance; or if your target isaHyperSQL Server running on your local computer with
default settings and the password for the "SA" account is blank (the SA password is blank when new HyperSQL
database instances are created). Edit the file if you need to change the target Server URL, username, password,
character set, JDBC driver, or TLS trust store as documented in the RC File Authentication Setup section. You
could, alternatively, usethe - - i nl i neRc command-line switch or the \j special command to connect up to a
data source, as documented below.

Find out whereyour sqgl t ool . j ar fileresides. It typically residesat HSQLDB HOME/ | i b/ sql t ool . j ar
where HSQLDB HOME is the "hsgldb" directory inside the root level of your HyperSQL software instal-
lation. (For example, if you extract hsql db-9. 1. 0. zi p into c: \tenp, your HSQLDB_HOVE would
be c: /tenp/ hsql db-9. 1. 0/ hsql db. Your file may also have a version label in the file name, like
sql tool -1. 2. 3. 4. j ar . The forward slashes work just fine on Windows). For this reason, I'm going to use
"$HSQLDB_HOME/lib/sgltool.jar" as the path to sql t ool . j ar for my examples, but understand that you
need to use the actual path to your ownsql t ool . j ar file. (Unix usersmay set areal env. variableif they wish,
in which case the examples may be used verbatim; Window users may do the same, but will need to dereference
the variables like %a'HI S%instead of like $THI S).

. Warning

My examples assume there are no spaces or funky characters in your file paths. This avoids bugs
with the Windows cmd shell and makes for simpler syntax all-around. If you insist on using direc-
tories with spaces or shell metacharacters (including standard Windows home directories like C:
\ Docunent s and Setti ngs\ bl ai ne), youwill need to double-quote arguments containing
these paths. (On UNIX you can alternatively use single-quotes to avoid variable dereferencing at
the sametime).

If you are just starting with SglTool, you are best off running your SglTool command from a shell command-line
(as opposed to by using icons or the Windows' Start/Run... or Start/Start Search). Thisway, you will be sureto see
error messages if you type the command wrong or if SglTool can't start up for some reason. On recent versions
of Windows, you can get a shell by running cnd from Start/Run... or Start/Start Search). On UNIX or Linux,
any real or virtual terminal will work.

On your shell command line, run

‘ java -jar $HSQLDB_HOVE/ | i b/sqltool.jar --help

HyperS@L SqiTool

to see what command-line arguments are available. Note that you don't need to worry about setting the CLASS-
PATHwhen you usethe-j ar switchtoj ava.

To run SglTool without a JDBC connection, run

‘ java -jar $HSQLDB_HOME/ lib/sqltool.jar

Y ou won't be able to execute any SQL, but you can play with the Sql Tool interface (including using PL features).

To execute SQL, you'll need the classesfor the target database's JDBC driver (and database engine classesfor in-
process databases). As this section istitled The Bare Minimum, I'll just say that if you are running SglTool from
aHyperSQL product installation, you are all set to connect to any kind of HyperSQL database. Thisis because
SqlTool will look for thefilehsql db. j ar inthesamedirectory assql t ool . j ar, and that file contains all of
the needed classes. (Sgl Tool supportsall JDBC databases and does not require aHyperSQL installation, but these
cases would take us beyond the bare minimum). So, with hsql db. j ar in place, you can run commands like

‘ java -jar $HSQLDB HOVE/lib/sqgltool.jar mem

for interactive use, or

‘ java -jar $HSQ.DB HOVE/lib/sqgltool.jar --sqgl ="SQ statenent;" nmem

or

‘ java -jar $HSQLDB_HOVE/lib/sqltool.jar memfilepathl.sql...

where memis an urlid, and the following arguments are paths to text SQL files. For the filepaths, you can use
whatever wildcards your operating system shell supports.

Theurlid mem in these commandsis akey into your RC file, as explained in the RC File Authentication Setup
section. Sincethisisamem: type catalog, you can use Sgl Tool with thisurlid immediately with no database setup
whatsoever (however, you can't persist any changes that you make to this database). The sample sgltool.rc file
also defines the urlid "localhost-sa* for alocal HyperSQL Listener. At the end of this section, | explain how you
can load some sample data to play with, if you want to.

. Tip

If SglTool fails to connect to the specified urlid and you don't know why, add the invocation parameter
- - debug. Thiswill cause SglTool to display a stack trace from where the connection attempt fails. (If
a connection attempt fails with the interactive \j command, details will always be displayed).

% I mportant
!

SglTool does not commit SQL changes by default. (You can use the - - aut oConmmi t command-line
switch to have it auto-commit). This leaves it to the user's disgression whether to commit or rollback
their modifications. If you do want your changes committed, remember to run \= before quitting Sgl Tool.
(Most databases also support the SQL command conmi t ;),

If you put afile named aut o. sqgl into your home directory, thisfile will be executed automatically every time that
you run SglTool interactively (unless you invoke with the - - noAut oFi | e switch).

To use a JDBC Driver other than the HyperSQL driver, ygu can't use the - j ar switch because you need to modify
the classpath. You must add the sql t ool . j ar file and your JDBC driver classes to your classpath, and you must
tell SglTool what the JIDBC driver class nameis. The latter can be accomplished by either using the "--driver" switch,

HyperS@L SqiTool

or setting "driver” in your config file. The RC File Authentication Setup section. explains the second method. Here's
an example of the first method (after you have set the classpath appropriately).

‘j ava org. hsqgl db. cndl i ne. Sgl Tool --driver=oracle.jdbc.OacleDriver urlid

Tip

If the tables of query output on your screen are all messy because of lineswrapping, the best and easiest
solutionisusually to resize your terminal emulator window to makeit wider. (With some termsyou click
& drag the frame edges to resize, with others you use a menu system where you can enter the number
of columns).

Embedding

Using SqlTool to execute SQL files from your own Java code

To repeat what is stated in the JavaDoc for the Sql Tool classitsalf: Programmatic userswill usually want to use
the objectMain(String[]) method if they want arguments and behavior exactly like command-line Sgl Tool. If you don't
need invocation parameter parsing, aut 0. sql exection, etc., you will have more control and efficiency by using the
SylFile class directly. Thefile src/ org/ hsql db/ sanpl e/ Sql Fi | eEnbedder . j ava inthe HyperSQL
distribution provides an example for this latter strategy.

Non-displayable Types

There are some SQL types which SglTool (being atext-based program) can't display properly. Thisincludes the SQL
types BLOB, JAVA_OBJECT, STRUCT, and OTHER. When you run a query that returns any of these, SglTool will
save the very first such value obtained to the binary buffer and will not display any output from this query. Y ou can
then save the binary value to afile, as explained in the Storing and retrieving binary files section.

Thereare other types, such as Bl NARY, which JDBC can make displayable (by using ResultSet.getString()), but which
you may very well want to retrieve in raw binary format. Y ou can use the \b command to retrieve any-column-type-
at-all in raw binary format (so you can later store the value to a binary file).

Another restriction which all text-based database clients have is the practical inability for the user to type in binary
data such as photos, audio streams, and serialized Java objects. Y ou can use SqglTool to load any binary object into
a database by telling SqlTool to get the insert/update datum from afile. Thisis also explained in the Storing and
retrieving binary files section.

Desktop shortcuts

Desktop shortcutsand quick launchiconsare useful, especially if you often run Sql T ool with the same set of arguments.
It'sreally easy to set up severa of them-- one for each way that you invoke Sgl Tool (i.e., each one would start Sgl Tool
with all the argumentsfor one of your typical startup needs). Onetypical setup isto have one shortcut for each database
account which you normally use (use adifferent ur | i d argument in each shortcut's Target specification.

Desktop icon setup varies depending on your Desktop manager, of course. I'll explain how to set up a SqlTool startup
icon in Windows XP. Linux and Mac users should be able to take it from there, since it's easier with the common
Linux and Mac desktops.

Procedure 1.2. Creating a Desktop Shortcut for SglT ool
1. Right click in the main Windows background.
2. New

3. Shortcut

HyperS@L SqiTool

4. Browse

o

Navigate to where your good JRE lives. For recent Sun JRE's, it installsto C: \ Program Fi | es\ Java\ *
\ bi n by default (the * will be aJDK or JRE identifier and version number).

6. Selectj ava. exe.
7. OK

8. Next

9. Enter any name
10. Finish

11. Right click the new icon.
12. Properties
13. Edit the Target field.

14. Leave the path to java.exe exactly as it is, including the quotes, but append to what is there. Beginning with a
space, enter the command-line that you want run.

15. Change Icon... to apretty icon.

16. If you want a quick-launch icon instead of (or in addition to) a desktop shortcut icon, click and drag it to your
quick launch bar. (Y ou may or may not need to edit the Windows Toolbar propertiesto let you add new items).

Loading sample data

If you want some sample database objects and datato play with, executethe sanpl e/ sanpl edat a. sql SQL
file. To separate the sample data from your regular data, you can put it into its own schema by running this before
you import:

CREATE SCHEMA sanpl edat a AUTHORI ZATI ON dba;
SET SCHEMA sanpl edat a;

Run it like this from an SglTool session

‘ \i HSQLDB_HOME/ sanpl e/ sanpl edat a. sql ‘

where HSQLDB_HOME isthe base directory of your HSQLDB software installation 1

For memory-only databases, you'll need to run this every time that you run SglTool. For other (persistent) databases,
the datawill reside in your database until you drop the tables.

Satisfying SqglTool's CLASSPATH Requirements

As discussed earlier, only the single file sql t ool . j ar is required to run SglTool (the file name may contain a
version label likesql t ool - 1. 2. 3. 4. j ar).Butit'suselessasan SQL Tool unlessyou can connect to aJDBC data
source, and for that you need the target database's JDBC driver in the classpath. For in-process catalogs, you'll also
need the database engine classes in the CLASSPATH. The The Bare Minimum section explainsthat the easiest way
to use SqlTool with any HyperSQL database isto just usesql t ool . j ar in-place where it resides in a HyperSQL
installation. This section explains how to satisfy the CLASSPATH requirements for other setups and use cases.

Accessing older HSQLDB Databases with SqlTool

If you are using SqlTool to access non-HSQL DB database(s), then you should use the |latest and greatest-- just grab
the newest public release of SglTooal (like from the latest public HyperSQL release) and skip this subsection.

HyperS@L SqiTool

You are strongly encouraged to use the latest SqlTool release to access older HSQLDB databases, to enjoy greatly
improved Sgl Tool robustness and features. It is very easy to do this.

1. Obtainthelatestsql t ool . j ar file. Oneway to obtainthelatest sql t ool . j ar fileisto download the latest
HyperSQL distribution and extract that single file

2. Place (or copy) your new sql t ool . j ar fileright alongside the hsql db. j ar file for your target database
version. If you don't have alocal copy of thehsql db. j ar filefor your target database, just copy it from your
database server, or download the full distribution for that server version and extract it.

3. (If you have used older versions of SglTool before, notice that you now invoke SglTool by specifying the
sql tool . j ar fileinstead of the hsql db. j ar). If your target database is a previous 2.x version of Hyper-
SQL, then you are finished and can use the new SglTool for your older database. Users upgrading from a pre-2.x
version please continue...

Run SqglTool like this.

‘ java -jar path/to/sqgltool.jar --driver=org.hsqldb.jdbcDriver... ‘

where you specify the pre-2.x JDBC driver name or g. hsql db. j dbcDri ver . Give any other SqlTool pa
rameters as you usually would.

Once you have verified that you can access your database using the - - dr i ver paramater as explained above,
edit your sql t ool . r ¢ file, and add anew line

‘ driver org. hsql db.jdbcDriver ‘

after each urlid that is for a pre-2.x database. Once you do this, you can invoke SglTool as usua (i.e. you no
longer need the - - dr i ver argument for your invocations).

App-specific Classes, Embedding, and non-HyperSQL
Databases

For these situations, you need to add your custom, third-party, or SQL driver classes to your Java CLASSPATH.
Java doesn't support adding arbitrary elements to the classpath when you use the - j ar , so you must set a classpath
containing sql t ool . j ar plus whatever else you need, then invoke SqlTool without the - j ar switch, as briefly
described at the end of the The Bare Minimum section. For embedded apps, invoke your own main class instead of
SglTool, and you can invoke Sql Tool or Sql Fi | e from your code base.

To customize the classpath, you need to set up your classpath by using your operating system or shell variable CLASS-

PATH or by using the j ava switch - cp (or the equivalent - cl asspat h). I'm not going to take up space here to
explain how to set up aJava CLASSPATH. That is a platform-dependent task that is documented well in tons of Java
introductions and tutorials. What I'm responsible for telling you iswhat you need to add to your classpath. For the non-
embedded case where you have set up your CLASSPATH environmental varialbe, you would invoke SqlTool likethis.

\ java org. hsqgl db. cndl i ne. Sgl Tool . .. \

If you are using the - cp switch instead of a CLASSPATH variable, stick it after j ava. After "Sqgl Tool ", give any
SqlTool parametersexactly asyouwould put afterj ava -jar .../ sql tool .| ar if youdidn't needto customize
the CLASSPATH. You can specify a JDBC driver class to use either with the - - dri ver switch to SqlTool, or in
your RC file stanza (the last method is usually more convenient).

Note that without the - j ar switch, SglTool will still automatically pull in HyperSQL JDBC driver or engine classes
from HyperSQL jar files in the same directory. It's often a good practice to minimize your runtime classpath. To
prevent the possibility of pulling in classes from other HyperSQL jar files, just copy sql t ool . j ar to some other
directory (which does not contain other HyperSQL jar files) and put the path to that onein your classpath.

HyperS@L SqiTool

Distributing SqlTool with your Apps

Y ou can distribute SglTool along with your application, for standalone or embedded invocation. For embedded use,
you will need to customize the classpath as discussed in the previous item. Either way, you should minimize your
application footprint by distributing only those HyperSQL jar files needed by your app. You will obviously need
sql t ool . j ar if you will use the Sgl Tool or Sqgl Fi | e classin any way. If your app will only connect to ex-
ternal HyperSQL listeners, then build and include hsql j dbc. j ar . If your app will aso run a HyperSQL Lis
tener, you'll need to include hsql db. j ar . If your app will connect directly to a in-process catalog, then include
hsql dbnai n. j ar. Note that you never need to include more than one of hsql db. j ar, hsql dbmai n. j ar,
hsql j dbc. j ar, since the former jarsinclude everything in the following jars.

SqlTool Client PCs

If you just want to be able to run SglToal (interactively or non-interactively) on a PC, and have no need for documen-
tation, then it's usually easiest to just copy sql t ool . j ar and hsql db. j ar tothe PCs (plus JDBC driver jars for
any other target databases). If you want to minize what you distribute, then build and distribute hsql j dbc. j ar or
hsql dbnai n. j ar instead of hsql db. j ar, according to the criterialisted in the previous sub-section.

RC File Authentication Setup

RC file authentication setup is accomplished by creating a text RC configuration file. In this section, when | say
configuration or config file, | mean an RC configuration file. RC files can be used by any JDBC client program that
uses the org.hsgldb.util.RCData class-- thisincludes Sql Tool, DatabaseM anager, DatabaseM anager Swing.

You can use it for your own JDBC client programs too. There is example code showing how to do thisat src/
or g/ hsql db/ sanpl e/ Sql Fi | eEnbedder . j ava .

The sample RC file shown hereresidesat sanpl e/ sql t ool . r¢c inyour HSQLDB distribution 1

Example 1.1. Sample RC File

$1d: sqgltool.rc 3353 2009-12-15 19: 52: 13Z unsaved $

This is a sanple RC configuration file used by Sqgl Tool, DatabaseManager

and any other programthat uses the org. hsqldb.lib. RCData cl ass

See the docunentation for Sgl Tool for various ways to use this file.

|f you have the | east concerns about security, then secure access to

your RC file

You can run Sgl Tool right now by copying this file to your hone directory

and runni ng

java -jar /path/to/sqgltool.jar nem

This will access the first urlid definition belowin order to use a

personal Menory-Only database

"url" values may, of course, contain JDBC connection properties, delinited
with senicol ons

As of revision 3347 of SqglFile, you can al so connect to datasources defined
here fromwithin an Sgl Tool session/file with the conmand "\j urlid".

You can use Java systemproperty values in this file like this: ${user.hone}
The only feature added recently is the optional "transiso" setting

which may be set to an all-caps transaction isolation level as |isted

in the Java APl Spec for java.sql.Connection

Wndows users are advised to use forward sl ashes instead of reverse slashes
and to avoid paths containi ng spaces or other funny characters. (This

recommendation applies to any Java app, not just Sqgl Tool)

A personal Menory-Only (non-persistent) database

10

HyperS@L Sqi Tool

urlid nmem

url jdbc: hsql db: mem mendbi d
user name SA

passwor d

A personal, local, persistent database

urlid persona

url jdbc: hsqgl db: file:${user. hone}/db/ personal ; shut down=true

user name SA

passwor d

transi so TRANSACTI ON_READ_COWM TTED

When connecting directly to a file database like this, you should
use the shutdown connection property like this to shut down the DB
properly when you exit the JVM

This is for a hsqldb Server running with default settings on your |oca
conmputer (and for which you have not changed the password for "SA")
urlid | ocal host-sa

url jdbc: hsql db: hsql : //1 ocal host

user name SA

passwor d

Tenplate for a urlid for an O acl e database

You will need to put the oracle.jdbc. Oracl eDriver class into your

cl asspath

In the great majority of cases, you want to use the file classesl2. zip
(which you can get fromthe directory $ORACLE_HOVE/ jdbc/lib of any

Oracle installation conpatible with your server)

Since you need to add to the classpath, you can't invoke Sqgl Tool with
the jar switch, like "java -jar .../hsqgldb.jar..." or

"java -jar .../hsqlsqgltool.jar...".

Put both the HSQLDB jar and cl asses12.zip in your classpath (and export!)
and run sonething like "java org. hsqgl db. util.Sqgl Tool ..."

#urlid cardiff2

#url jdbc:oracle:thin: @egir.adnc. com 1522: TRAFFI C_SI D
#user nane bl ai ne

#password secret password

#driver oracle.jdbc. OracleDriver

Tenplate for a TLS-encrypted HSQLDB Server.

Remenber that the hostnane in hsgls (and https) JDBC URLs must nmatch the
CN of the server certificate (the port and instance alias that follows

are not part of the certificate at all)

You only need to set "truststore" if the server cert is not approved by
your systemdefault truststore (which a comercial certificate probably
woul d be)

#urlid tls

#url jdbc: hsql db: hsql s://db. adnc. com 9001/ | n2
#user name BLAI NE
#password asecr et
#truststore ${user. hone}/cal/ db/db-trust.store

Tenpl ate for a Postgresql database

#urlid bl ai nedb

#url jdbc: postgresql://idun.africawork. org/bl ai nedb
#user nane bl ai ne

#password | osungl

#driver org.postgresql.Driver

Tenplate for a M/SQL dat abase. MSQL has poor JDBC support.

11

HyperS@L SqiTool

#urlid nysql-testdb

#url jdbc: nmysql://hostname: 3306/ dbnane
#user nane r oot

#password hi ddenpwd

#driver com nysql.jdbc.Driver

Note that "databases" in SQ Server and Sybase are traditionally used for
the same purpose as "schemas" with nmore SQL-conpliant databases.

Tenplate for a Mcrosoft SQ Server database

#urlid nsprojsvr

#url jdbc: m crosoft:sql server://host nane; Dat abaseNanme=DbNane; Sel ect Met hod=Cur sor
The Sel ect Method setting is required to do nore than one thing on a JDBC
session (I guess Mcrosoft thought nobody would really use Java for

anything other than a "hello world" program.

This is for Mcrosoft's SQ Server 2000 driver (requires nssqlserver.jar
and nsutil.jar).

#driver com microsoft.jdbc. sql server. SQLServerDriver

#user name nyuser

#password hi ddenpwd

Tenpl ate for a Sybase dat abase

#urlid sybase

#url jdbc: sybase: Tds: host nane: 4100/ dbnane

#user nane bl ai ne

#password hi ddenpwd

This is for the jConnect driver (requires jconn3.jar)
#driver com sybase.j dbc3.jdbc. SybDri ver

Tenpl ate for Enbedded Derby / Java DB.

#urlid derbyl

#url jdbc: derby: path/to/ derby/directory;create=true

#user name ${user. nane}

#password any_noaut hbydef aul t

#driver org.apache. derby.jdbc. EnbeddedDri ver

The enbedded Derby driver requires derby.jar.

There' a al so the org.apache. derby.jdbc. CientDriver driver with URL

l'i ke jdbc:derby://<server>[:<port>]/databaseName, which requires
derbyclient.jar.

You can use \=to comit, since the Derby team decided (why???)

not to inplenent the SQL standard statement "commit"!!

Not e that Sqgl Tool can not shut down an enbedded Derby database properly,
since that requires an additional SQ. connection just for that purpose.
However, |'ve never |ost data by not shutting it down properly.

O her than not supporting this quirk of Derby, Sql Tool is mles ahead of ij.

HHHHHHHHHHR

As noted in the comment (and as used in a couple examples), you can use Java system properties like this:
${user. hone}. Windows users, please read the suggestion directed to you in the file.

Y ou can put thisfile anywhere you want to, and specify the location to Sql Tool/DatabaseM anager/DatabaseM anager-
Swing by usingthe- - r cf i | e argument. If there is no reason to not use the default location (and there are situations
where you would not want to), then use the default location and you won't have to give - - r cf i | e arguments to
Sl Tool/DatabaseM anager/DatabaseM anagerSwing. The default location is sql t ool . rc or dbrmanager . rc in
your home directory (corresponding to the program using it). If you have any doubt about where your home directory
is, just run SglTool with aphony urlid and it will tell you where it expects the configuration file to be.

‘ java -jar $HSQLDB_HOMVE/li b/ sql tool.jar x

The config file consists of stanza(s) like this:

urlid web

url jdbc: hsql db: hsql : //1 ocal host
user nane web

password webspassword

12

HyperS@L SqiTool

These four settings are required for every urlid. (There are optional settings also, which are described a couple para
graphs down). The URL may contain JDBC connection properties. Y ou can have as many blank lines and comments
like

‘ # This coment ‘

in the file as you like. The whole point is that the urlid that you give in your SglTool/DatabaseManager command
must match aurlid inyour configuration file.

I mportant
!

Use whatever facilities are at your disposal to protect your configuration file.

It should be readable, both locally and remotely, only to users who run programs that need it. On UNIX, thisiseasily
accomplished by using chnmod/ chown commands and making sure that it is protected from anonymous remote
access (likeviaNFS, FTP or Samba).

Y ou can also put the following optiona settingsinto aurlid stanza. The setting will, of course, only apply to that urlid.

charset Thisis used by the SglTool program, but not by the DatabaseM anager programs. Seethe Character
Encoding section of the Non-Interactive section. Thisis used for input and output files, not for
stdin or stdout, which are controlled by environmental variables and Java system properties. If you
set no encoding for an urlid, input and outfiles will use the same encoding as for stdin/stdout. (As of
right now, the charset setting here is not honored by the \j command, but only when SqlTool loads
an urlid specified on the command-line).

driver Setsthe JDBC driver class name. You can, alternatively, set thisfor one Sgl Tool/DatabaseM anager
invocation by using the command line switch --driver. Defaults to org.hsgldb.jdbc.JDBCDriver.

truststore TLStrust keystore store file path as documented in the TLS section of the Listeners chapter of the
HyperSQL User Guide [http://hsgldb.org/doc/2.0/guide/index.html] You usually only need to set
thisif the server isusing anon-publicly-certified certificate (like aself-signed self-cad cert). Relative
paths will be resolved relative to the ${ user . di r} system property at JRE invocation time.

transiso Specify the Transaction I solation Level with an all-caps string, exactly aslisted in he Field Summary
of the Java API Spec for the classj ava. sql . Connecti on.

Property and SglTool command-line switches override settings made in the configuration file.

Switching Data Sources

The\j command letsyou switch IDBC Data Sourcesin your SQL files (or interactively). "\?" showsthe syntax to make
a connection by either RCData urlid or by name + password + JDBC Url. The urlid variant uses RC file of $HOVE/
sgl t ool . rc. Wewill add away to specify an RC fileif thereis any demand for that.

You can start SglTool without any JDBC Connection by specifying no Inline RC and urlid of "-" (just a hyphen). If
you don't need to specify any SQL file paths, you can skip the hypen, asin this example.

‘j ava -jar $HSQLDB HOVE/ |l i b/sqgltool.jar --setVar=vli=one ‘

(The"-" isrequired when specifying one or more SQL files, in order to distinguish urlid-spec from file-spec). Conse-
quently, if you invoke SglTool with no parameters at al, you will get a SglTool session with no JDBC Connection.
You will obviously need to use\j before doing any database work.

13

http://hsqldb.org/doc/2.0/guide/index.html
http://hsqldb.org/doc/2.0/guide/index.html

HyperS@L SqiTool

Using Inline RC Authentication

Inline RC authentication setup is accomplished by using the- - i nl i neRc command-line switch on SglTool. The- -

i nl i neRc command-line switch takes a comma-separated list of key/value elements. Theur | and user elements
are required. The rest are optional. The - - i nl i neRc switch is the only case where you can give SQL file paths
without a preceding urlid indicator (an urlid or -). The program knows not to look for an urlid if you give an inline.

url The JDBC URL of the database you wish to connect to.
user The username to connect to the database as.
char set Sets the character encoding. Overrides the platform default, or what you have set by env variables

or Java system properties. (Does not effect stdin or stdout).

truststore TheTLStrust keystore file path as documented in the TLS chapter. Relative paths will be resolved
relative to the current directory.

transi so j ava. sgl . Connect i on transaction isolation level to connect with, as specified in the Java API
Spec.

passwor d Y ou may only use this element to set empty password, like
‘ passwor d= ‘

For any other password value, omit the passwor d element and you will be prompted for the value.

(Usethe- - dri ver switchinstead of - - i nl i neRc to specify aJDBC driver class). Hereis an example of invoking
Sl Tool to connect to a standal one database.

‘j ava -jar $HSQLDB HOVE/ li b/sqltool.jar --inlineRc=url=jdbc:hsqldb:file:/hone/dan/dandb, user=dan ‘

For security reasons, you cannot specify a non-empty password as an argument. Y ou will be prompted for a password
as part of the login process.

Logging

Both the\l command and all warnings and error messages now use alogging facility. The logging facility hands off to
Log4j if Log4j isfound in the classpath, and otherwisewill hand off toj ava. uti | . | oggi ng. Thedefault behavior
of java. util .| oggi ng should work finefor most users. If you are using log4j and are redirecting with pipes, you
may want to configure a Console Appender with target of " Syst em err" so that error output will go to the error
stream (all console output for j ava. uti | . | oggi ng goesto stderr by default). Seethe API specsfor Log4j and for
J2SE for how to configure either product. If you are embedding SglTool in a product to process SQL files, | suggest
that you uselog4j. j ava. uti | . | oggi ng is neither scalable nor well-designed.

Run the command \ | ? to see how to use the logging command \ | in your SQL files (or interactively), including
what logging levels you may specify.

Interactive Usage

Do read the The Bare Minimum section before you read this section.

You run SglTool interactively by specifying no SQL filepaths on the SglTool command line. Like this.

‘ java -jar $HSQLDB_HOVE/lib/sqltool.jar urlid

14

HyperS@L SqiTool

Procedure 1.3. What happenswhen SqlTool isrun interactively (using all default settings)

1. SglTool starts up and connects to the specified database, using your SglTool configuration file (as explained in
the RC File Authentication Setup section).

2. SQL fileaut 0. sql inyour home directory is executed (if thereisone),

3. SqiTooal displaysabanner showing the Sgl Tool and SqlFile version numbers and describesthe different command
types that you can give, as well ascommandsto list al of the specific commands available to you.

Y ou exit your session by using the "\q" special command or ending input (like with Ctrl-D or Ctrl-Z).

I mportant
!

Any command may be preceded by space characters. Special Commands, Edit Buffer Commands, PL
Commands, Macros always consist of just one line.

These rules do not apply at al to Raw Mode . Raw mode is for use by advanced users when they want
to completely bypass SglTool processing in order to enter a chunk of text for direct transmission to the
database engine.

SqlTool Command-Line Editing

If you are really comfortable with grep, perl, or vim, you will instantly be an expert with SgiTool command-line
editing. Due to limitations of Java I/O, we can't use up-arrow recall, which many people are used to from DosKey
and Bash shell. If you don't know how to use regular expressions, and don't want to learn how to use them, then just
forget command-recall.

Basic command entry (i.e., without regexps)
» Just type in your command, and use the backspace-key to fix mistakes on the sameline.

* If you goof up a multi-line command, just hit the ENTER key twice to start over. (The command will be moved
to the buffer where it will do no harm).

» Usethe":h" command to view your command history. Y ou can use your terminal emulator scroll bar and copy and
paste facility to repeat commands.

» Aslong as you don't need to change text that is already in a command, you can easily repeat commands from the
history like ":14;" to re-run command number 14 from history.

» Expanding just a bit from the previous item, you can add on to a previous command by running a command like
":14a" (where the "a' means append).

» Seethe Macros section about how to set and use macros.
If you use regular expressions to search through your command history, or to modify commands, be aware that the

command type of commandsin history are fixed. Y ou can search and modify the text after a\ or * prefix (if any), but
you can't search on or change a prefix (or add or remove one).

Command Types

When you are typing into Sgl Tool, you are always typing part of the immediate command. If the immediate command
isan SQL statement, it is executed as soon as Sl Tool reads in the trailing (unquoted) semi-colon. Commands of the

15

HyperS@L SqiTool

other command types are executed as soon as you hit ENTER. The interactive : commands can perform actions with
or on the edit buffer. The edit buffer usually contains a copy of the last command executed, and you can always view
it with the :b command. If you never use any : commands, you can entirely ignore the edit buffer. If you want to repeat
commands or edit previous commands, you will need to work with the edit buffer. The immediate command contains
whatever (and exactly what) you type. The command history and edit buffer may contain any type of command other
than commentsand : commands (i.e., : commands and comments are just not copied to the history or to the edit buffer).

Hopefully an example will clarify the difference between the immediate command and the edit buffer. If you typein
the edit buffer Substitution command™: s/ t bl / t abl e/ ", the:scommand that you typed isthe immediate command
(and it will never be stored to the edit buffer or history, sinceit is a: command), but the purpose of the substitution
command is to modify the contents of the edit buffer (perform a substitution on it)-- the goal being that after your
substitutions you would execute the buffer with the": ; " command. The":a"' command is special in that when you hit
ENTER to execute it, it copies the contents of the edit buffer to a new immediate command and leaves you in a state
where you are appending to that immediate command (nearly) exactly asif you had just typed it in.

Command Types

Command types

SQL Statement Any command that you enter which does not begin with "\", ":", "* " or "/" is
an SQL Statement. The command is not terminated when you hit ENTER, like
most OS shells. You terminate SQL Statements with either ;" or with a blank
line. In the former case, the SQL Statement will be executed against the SQL
database and the command will go into the edit buffer and SQL command his-
tory for editing or viewing later on. In the former case, execute against the SQL
database means to transmit the SQL text to the database engine for execution.
In the latter case (you end an SQL Statement with a blank line), the command
will go to the edit buffer and SQL history, but will not be executed (but you can
executeit later from the edit buffer).

(Blank lines are only interpreted thisway when SglTool isrun interactively. In
SQL files, blank lines inside of SQL statements remain part of the SQL state-
ment).

Asaresult of these termination rules, whenever you are entering text that is not
a Special Command, Edit Buffer / History Command, or PL Command, you are
always appending lines to an SQL Statement or comment. (In the case of the
first line, you will be appending to an empty SQL statement. |.e. you will be
starting a new SQL Statement or comment).

Special Command Run the command "\?" to list the Special Commands. All of the Special Com-
mands begin with "\". I'll describe some of the most useful Special Commands
below.

Edit Buffer / History Command Run the command ":?" to list the Edit-Buffer/History Commands. All of these

commands begin with ":". These commands use commands from the command
history, or operate upon the edit "buffer", so that you can edit and/or (re-)execute
previously entered commands.

PL Command Procedural Langage commands. Run the command "*?"' to list the PL Com-
mands. All of the PL Commands begin with "*". PL commands are for setting
and using scripting variables and conditional and flow control statements like
* i f and* whil e. A few PL features (such as macros and updating and se-
lecing data directly from/to files) can be areal convenience for nearly all users,

16

HyperS@L

SqlTool

Macro Command

Raw Mode

so these features will be discussed briefly in this section. More detailed expla-
nation of PL variables and the other PL features, with examples, are coveredin
the SqglTool Procedural Language section.

Macro definition and usage commands. Run the command "/?' to show the
define, list, or use macros.

The descriptions of command-types above do not apply to Raw Mode. In raw
mode, SqlTool doesn't interpret what you type at al. It al just goes into the
edit buffer which you can send to the database engine. Beginners can safely
ignore raw mode. You will never encounter it unless you run the "\." special
command, or define astored procedure or function. Seethe Raw Mode section
for the details.

Special Commands

Essential Special Commands
\?

\q

\j...

\i path/to/script.sql

\x?

\m?

\d?

\dt [filter_substring]
\dv [filter_substring]
\ds [filter_substring]
\di [table_name]

\dS [filter_substring]
\da[filter_substring]

\dn [filter_substring]

help
quit

View JDBC Data Source detail sor connect up to aJDBC Data Source (replacing
the current connection, if any). Run\?to seethe syntax for the different usages.

execute the specified SQL script, then continue again interactively. Since Sql-
Tool is a Java program, you can safely use forward slashes in your file paths,
regardless of your operating system.

commit the current SQL transaction. Most users are used to typing the SQL
statement commi t ; , but this command is crucial for those databases which
don't support the statement. 1t's obviously unnecessary if you have auto-commit
mode on.

List asummary of DSV eXporting, and al available DSV options.

List asummary of DSV iMporting, and all available DSV options.

List asummary of the\d commands below.

17

HyperS@L

SqlTool

\du [filter_substring]
\dr [filter_substring]

\d* [filter_substring]

Lists available objects of the given type.

 t: non-system Tables

e v:Views

e s Sequences

e i: Indexes

* a Aliases

S: System tables

* n: schemaNames

* Uu: database Users

* r: Roles

o *: dl table-like objects
If your database supports schemas, then the schema name will also be listed.

If you supply an optiona filter substring, then only itemswhich match the spec-
ified substring. will be listed. In most cases, the specified filter will be treated
asaregular expression matched against the candidate object names. In order to
take advantage of extreme server-side performance benefits, however, in some
cases the substring is passed to the database server and the filter will processed
by the server.

| mportant

Theregexptest iscase-sensitive! Even thoughin SQL queriesand
for the "\d objectname" command object names are usually case-
insensitive, for the \dX commands, you must capitalize the filter
substring exactly asit will appear in the special command outpuit.
This is an inconvenience, since the database engine will change
names in SQL to default case unless you double-quote the name,
but that is server-side functionality which cannot (portably) bere-
produced by SglTool. Y ou can use spaces and other special char-
actersin the string.

Tip

Filter substrings ending with "." are special. If a substring ends
with ".", then this means to narrow the search by the exact,
case-sensitive schema name given. For example, if | run "\d*
BLAINE.", this will list all table-like database objects in the
"BLAINE" schema. The capitalization of the schema must be ex-
actly the same as how the schema name is listed by the "\dn"

command. Y ou can use spaces and other special charactersin the
18

HyperS@L

SqlTool

\d objectname [[/]regexp]

string. (I.e., enter the name exactly how you would enter it inside
of double-quotesin an SQL command). Thisisan inconvenience,
since the database engine will change names in SQL to default
case unless you double-quote the name, but that is server-side
functionality which cannot (portably) be reproduced by SqlTool.

Tip

The filter string "." (just a plain dot) means the current session
schema, for databases which support the concept according to the
SQL standard (HyperSQL database does).

I mportant

Indexes may not be searched for by substring, only by exact target
table name. So if 1 1 is an index on table T1, then you list this
index by running "\di T1". In addition, many database vendors
will report onindexesonly if atarget tableisidentified. Therefore,
"\di" with no argument will fail if your database vendor does not
support it.

Lists names of columns in the specified table or view. obj ect nane may be
a base table name or a schema.object name.

If you supply afilter string, then only columns with a name matching the given
regular expressionwill belistd. (If no special charactersare used, thisjust means
that names containing the specified substring will match). You'll find thisfilter
isagreat convenience compared to other database utilities, where you have to
list al columns of large tables when you are only interested in one of them.

To narrow the displayed information based on al column outputs, instead of
just the column names, just prefix the expression with /. For example, to list al
INTERGER columns, you could run\ d nyt abl e /1 NTEGER.

Tip

When working with real data (as opposed to learning or playing),
| often find it useful to run two SglTool sessions in two side-by-
side terminal emulator windows. | do al of my real work in one
window, and use the other mostly for \d commands. Thisway | can
refer to the data dictionary whilewriting SQL commands, without
having to scroll.

This list here includes only the essential Special Commands, but n.b. that there are other useful Special Commands
which you can list by running \ ?. (Y ou can, for example, execute SQL from external SQL files, and save your inter-
active SQL commands to files). Some specifics of these other commands are specified immediately below, and the
Generating Text or HTML Reports section explainshow to usethe"\o" and "\H" special commandsto generatereports.

Be aware that the\ ! Special Command does not work for external programs that read from standard input. Y ou can
invoke non-interactive and graphical interactive programs, but not command-line interactive programs.

SqlTool executes\ ! programs directly, it does not run an operating system shell (thisis to avoid OS-specific code
in SglTool). Because of this, you can give as many command-line arguments as you wish, but you can't use shell

wildcards or redirection.

19

HyperS@L SqiTool

The \w command can be used to store any command in your SQL history to afile. Just restore the command to the
edit buffer with acommand like "\-4" before you give the \w command.

Edit Buffer / History Commands

Edit Buffer / History Commands

? help
‘b List the current contents of the edit buffer.
‘h Shows the Command History. For each command which has been executed

(up to the max history length), the SQL command history will show the com-
mand; its command number (#); and also how many commands back it is (as
a negative number). : commands are never added to the history list. You can
then use either form of the command identifier to recall acommand to the edit
buffer (the command described next) or as the target of any of the following :
commands. This last is accomplished in a manner very similar to the vi editor.
Y ou specify the target command number between the colon and the command.
As an example, if you gave the command : s/ X/ Y/ , that would perform the
substitution on the contents of the edit buffer; but if you gave the command
:-3 s/ X/'Y/, that would perform the substitution on the command 3 back
in the command history (and copy the output to the edit buffer). Also, just like
Vi, you can identify the command to recall by using aregular expression inside
of dashes, like: / bl ue/ s/ X/ Y/ to operate on the last command you ran
which contains "blue".

:130R :-2 OR :/blue/ Recallsacommand from Command history to the edit buffer. Enter ":" followed
by the positive command number from Command history, like ":13"... or ":"
followed by a negative number like":-2" for two commands back in the Com-
mand history... or ":" followed by aregular expression inside slashes, like ":/
blue/" to recall the last command which contains "blue". The specified com-
mand will be written to the edit buffer so that you can executeit or edit it using
the commands bel ow.

As described under the :h command immediately above, you can follow the
command number here with any of the commands below to perform the given
operation on the specified command from history instead of on the edit buffer
contents. So, for example, ":4;" would load command 4 from history then exe-
cuteit (seethe":;" command below).

5 Executesthe SQL, Special or PL statement in the edit buffer (by default). Thisis

an extremely useful command. It's easy to remember because it consists of ":",
meaning Edit Buffer Command, plus a line-terminating ";", (which generally
means to execute an SQL statement, though in this case it will also execute a

special or PL command).

a Enter append mode with the contents of the edit buffer (by default) asthe current
command. When you hit ENTER, things will be nearly exactly the same as if
you physically re-typed the command that is in the edit buffer. Whatever lines
you type next will be appended to the immediate command. As aways, you
then have the choice of hitting ENTER to execute a Special or PL command,
entering a blank line to store back to the edit buffer, or end a SQL statement
with semi-colon and ENTER to executeit.

20

HyperS@L SqiTool

Y ou can, optionally, put astring after the :a, in which case thingswill be exactly
as just described except the additional text will also be appended to the new
immediate command. If you put a string after the :awhich ends with ;, then the
resultant new immediate command will just be executed right away, as if you
typed in and entered the entire thing.

If your edit buffer contains SELECT x FROM nyt ab andyouruna: | e, the
resultant command will be SELECT x FROM nyt abl e. If your edit buffer
contains SELECT x FROM nytab andyouruna: ORDER BY vy, the
resultant command will be SELECT x FROM nyt ab ORDER BY y. Notice
that in the latter case the append text begins with a space character.

You may notice that you can't use the left-arrow or backspace key to back up
over theoriginal text. Thisisdueto Javaand portability constraints. If you want
to edit existing text, then you shouldn't use the Append command.

.g/from regex/to string/switches The Substitution Command is the primary method for SglTool command edit-
ing-- it operates upon the current edit buffer by default. The "to string" and the
"switches' are both optional (though the final "/" is not). To start with, I'll dis-
cuss the use and behavior if you don't supply any substitution mode switches.

Don't use"/" if it occurs in either "from string" or "to string”. Y ou can use any
character that you want in place of "/", but it must not occur in the from or to
strings. Example

‘ cs@romstring@o string@ ‘

Theto string is substituted for the first occurrence of the (case-specific) from
string. The replacement will consider the entire SQL statement, eveniif itisa
multi-line statement.

In the example above, the from regex was a plain string, but it is interpret-
ed as a regular expression so you can do al kinds of powerful substitutions.
See the perl re man page, or the javautil.regex.Pattern [http://http://
java.sun.com/javase/6/docs/api/javalutil/regex/Pattern.html] API Spec for ev-
erything you need to know about extended regular expressions.

Don't end ato string with ;" in attempt to make a command execute. Thereis
a substitution mode switch to use for that purpose.

Y ou can use any combination of the substitution mode switches.

« Use"i" to make the searches for from regex case insensitive.

« Use"g" to substitute Globally, i.e., to subsitute all occurrences of the from
regex instead of only the first occurrence found.

e Use";" to execute the command immediately after the substitution is per-
formed.

e Use "m" for » and $ to match each line-break in a multi-line edit buffer,
instead of just at the very beginning and every end of the entire buffer.

21

http://http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

HyperS@L SqiTool

If you specify acommand number (from the command history), you end up with
a feature very reminiscent of vi, but even more powerful, since the Perl/Java
regular expression are a superset of the vi regular expressions. As an example,

‘ : 24 s/ pin/ needl e/ g; ‘

would start with command number 24 from command history, substitute "nee-
dle" for al occurrences of "pin", then execute the result of that substitution (and
thisfinal statement will of course be copied to the edit buffer and to command
history).

‘w /path/to/file.sqgl This appends the contents of the current buffer (by default) to the specified
file. Since what is being written are Special, PL, or SQL commands, you are
effectively creating an SQL script.

| find the":/regex/" and ":/regex/;" constructs particularly handy for every-day usage.

\ SI\\df; \

re-executes the last \d command that you gave (The extra"\" is needed to escape the special meaning of "\" in regular
expressions). It's great to be able to recall and execute the last "insert" command, for example, without needing to
check the history or keep track of how many commands back it was. To re-execute the last insert command, just run
":linsert/;". If you want to be safe about it, do it in two steps to verify that you didn't accidentally recall some other
command which happened to contain the string "insert”, like

:linsert/

(Executing the last only if you are satisfied when SglTool reports what command it restored). Often, of course, you
will want to change the command before re-executing, and that's when you combine the :s and :a commands.

WEe'l finish up with a couple fine points about Edit/Buffer commands. You generally can't use PL variablesin Ed-
it/Buffer commands, to eliminate possi ble ambiguities and compl exities when modifying commands. The :w command
isan exception to thisrule, since it can be useful to use variables to determine the output file, and this command does
not do any "editing".

The :? help explains how you can change the default regular expression matching behavior (case sensitivity, etc.),
but you can always use syntax like "(7)" inside of your regular expression, as described in the Java APl spec for
class java.util.regex.Pattern [http://http://java.sun.comn javase/6/docs/api/
javalutil/regex/ Pattern. htm] . History-command-matching with the /regex/ construct is purposefully
liberal, matching any portion of the command, case sensitive, etc., but you can still use the method just described to
modify thisbehavior. Inthiscase, you could use"(?-i)" at the beginning of your regular expression to be case-sensitive.

PL Commands

Essential PL Command

* VARNAME = value Set the value of avariable. If the variable doesn't exist yet, it will be created.
The most common use for thisis so that you can later useit in SQL statements,
print statements, and PL conditionals, by using the* { VARNAME} or * { : VAR-
NAME} construct. The only difference between*{literal } and*{: VAR
NAME} isthat the former produces an error if VARNAME is not set, whereas
the latter will expand to a zero-length string if VARNAME is not set.

22

http://http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

HyperS@L SqiTool

If you put variable definitions into the SQL file aut 0. sql in your home di-
rectory, those variables will always be available for interactive use.

PL variables can be expanded within all commands other than : edit/history
commands.

* load VARNAME /file/path.txt Sets VARNAME to the content of the specified ASCII file.

* prepare VARNAME Indicate that next command should be a SQL INSERT or UPDATE command
containing one question mark. The value of VARNAME will be substuted for
the ? variable. This doeswork for CLOB columns.

* VARNAME _ When next SQL command is run, instead of displaying the rows, just store the
very first columnvalueto variable VARNAME. Thisworksfor CLOB columns
too. It also works with Oracle XML type columnsif you use column labels and
theget cl obval function.

* VARNAME ~ Exactly the same as

\ * VARNAME ~ \

except that the fetched results will be displayed in addition to setting the vari-
able.

* dump VARNAME /file/path.txt Store the value of VARNAME to the specified ASCII file.

? Variable

You don't set the ? variable. It isjust like the Bourne shell variable $?in that it is always automatically set to the first
value of aresult set (or the return value of other SQL commands). It works just likethe* VARNAME ~ command
described above, but it all happens automatically. Y ou can, of course, dereference ? like any PL variable, but it does
not list withthel i st and | i st val ues commands. Y ou can see the value whenever you want by running

C \p {2} |

Note that PL commands are used to upload and download column values to/from local ASCII files, but the corre-
sponding actions for binary files use the special \b commands. Thisis because PL variables are used for ASCI| values
and you can store any number of column values in PL variables. This is not true for binary column vaues. The \b
commands work with a single binary byte buffer.

Seethe SqglTool Procedural Language section below for information on using variablesin other ways, and information
on the other PL commands and features.

Storing and retrieving binary files

Y ou can upload binary files such as photographs, audio files, or serialized Java objectsinto database columns. Sql Tool
keeps one binary buffer which you can load from files with the \bl command, or from a database query by doing aone-
row query for any non-displayable type (including BLOB, OBJECT, and OTHER). In the |atter case, the data returned
for the first non-displayable column of the first result row will be stored into the binary buffer.

Once you have data in the binary buffer, you can upload it to a database column (including BLOB, OBJECT, and
OTHER type columns), or save it to a file. The former is accomplished by the special command \bp followed by a
prepared SQL query containing one question mark place-holder to indicate where the data gets inserted. The latter
is accomplished with the \bd command.

23

HyperS@L SqiTool

Y ou can also store the output from normal, displayable column into the binary buffer by using the special command \b.
Thevery first column value from thefirst result row of the next SQL command will be stored to the binary byte buffer.

Example 1.2. Inserting binary data into database from afile

\'bl /tnp/favoritesong. np3
\ bp
I NSERT | NTO nusictbl (id, strean) VALUES(3112, ?);

Example 1.3. Downloading binary data from databaseto afile

SELECT stream FROM nusi ctbl WHERE id = 3112;
\bd /tnp/favoritesong. np3

Y ou can also store and retrieve text column values to/from ASCI| files, as documented in the Essential PL Command
section.

Command History

The SQL history shown by the \h command, and used by other commands, is truncated to 100 entries, since its utility
comesfrom being ableto quickly view the history list. Y ou can change the history length by setting the system property
sql t ool . hi st or yLengt h tothedesireinteger value (using any of the System Property mechanisms provided by
Java). If thereis any demand, I'll make the setting of this value more convenient.

The SQL history list contains all executed commands other than Edit Buffer commands and comments, even if the
command has a syntax error or fails upon execution. The reason for including bad commandsis so that you can recall
and fix them if you wish to. The same appliesto the edit buffer. If you copy a command to the edit buffer by entering
blank line, or if you edit the edit buffer, that edit buffer value will never make it into the command history until and
if you executeit.

Shell scripting and command-line piping

Y ou normally use non-interactive mode for input piping. You specify "-" as the SQL file name. See the Piping and
shell scripting subsection of the Non-Interactive chapter.

Emulating Non-Interactive mode

You can run SglTool interactively, but have SglTool behave exactly as if it were processing an SQL file (i.e., no
command-line prompts, error-handling that defaults to fail-upon-error, etc.). Just specify "-" asthe SQL file namein
the command line. Thisis a good way to test what SqglTool will do when it encounters any specific command in an
SQL file. Seethe Piping and shell scripting subsection of the Non-Interactive chapter for an example.

Non-Interactive

Read the Interactive Usage section if you have not already, because much of what isin this section builds upon that.
You can skip all discussion about Command History and the edit buffer if you will not use those interactive features.

| mportant
!

If you're doing data updates, remember to issue acommit command or usethe- - aut oConmi t switch.

As you'll see, SglTool has many features that are very convenient for scripting. But what really makes it superior
for automation tasks (as compared to SQL tools from other vendors) is the ability to reliably detect errors and to
control JDBC transactions. Sql Tool isdesigned so that you can reliably determineif errors occurred within SQL scripts

24

HyperS@L Sqi Tool

themselves, and from the invoking environment (for example, from a perl, Bash, or Python script, or a simple cron
tab invocation).

Giving SQL on the Command Line

If you just have a couple Commands to run, you can run them directly from the comand-line or from a shell script
without an SQL file, likethis.

‘j ava -jar $HSQLDB_HOME/|li b/sqgltool .jar --sqgl ="SQL statement;" urlid ‘

Note

The - - sql switch automatically implies - - noi nput , so if you want to execute the specified SQL
before and in addition to an interactive session (or stdin piping), then you must also give the --stdinput
switch.

Since Sl Tool transmits SQL statements to the database engine only when aline is terminated with ";", if you want
feedback from multiple SQL statements in an --sgl expression, you will need to use functionality of your OS shell
to include linebreaks after the semicolons in the expression. With any Bourne-compatible shell, you can include line-
breaksin the SQL statementslike this.

java -jar $HSQLDB_HOVE/lib/sqltool.jar --sql=
SQL statenment nunber one;
SQ st at enent
nunmber two;
SQL statenent three;
urlid

Note

The multi-line examplesin this section will only work as-is with a Bourne-compatible shell. With some
ugliness they can be converted to C shell. For Windows, you are better off to stick with SQL files for
multi-line input.

If you don't need feedback, just separate the SQL commandswith semicolonsand the entire expression will be chunked

The --sgl switch is very useful for setting shell variables to the output of SQL Statements, like this.

A shell script
USERCOUNT="j ava -jar $HSQLDB_HOVE/|i b/sqltool .jar --sqgl =
sel ect count(*) fromusertbl;
urlid || {
Handl e the Sql Tool error

}

echo "There are $USERCOUNT users registered in the database."

["SUSECOUNT" -gt 3] && { # If there are nore than 3 users registered
Some conditional shell scripting

SQL Files

Just give pathsto sql text file(s) on the command line after the urlid.

Often, you will want to redirect output to afile, like

‘java -jar $HSQLDB HOVE/lib/sqgltool.jar urlid file.sqgl... > /tnp/file.log 2>&1

25

HyperS@L SqiTool

You can also execute SQL files from an interactive session with the "\i"* Special Command, but be aware that the
default behavior in an interactive session is to continue upon errors. If the SQL file was written without any concern
for error handling, then the file will continue to execute after errors occur. You could run\ c fal se before\ i
fi | enane, but then your SglTool session will exit if an error is encountered in the SQL file. If you have an SQL file
without error handling, and you want to abort that file when an error occurs, but not exit SqlTool, the easiest way to
accomplish thisisusually toadd\ ¢ f al se to the top of the script.

If you specify multiple SQL files on the command-line, the default behavior is to exit SglTool immediately if any of
the SQL files encounters an error.

SQL files themselves have ultimate control over error handling. Regardless of what command-line options are
set, or what commands you giveinteractively, if aSQL file gives error handling statements, they will take precedence.

You can aso use\i in SQL files. Thisresultsin nested SQL files.

You can use the following SQL file, sanpl e/ sanpl e. sgl , from your HyperSQL distribution L1t contains
SQL aswell as Special Commands making good use of most of the Special Commands documented bel ow.

/*
$ld: sanpl e.sgl 3637 2010-06-07 00: 59: 13Z unsaved $
Exenplifies use of Sqgl Tool .
PCTASK Tabl e creation
*
/

/* lgnore error for these two statements */
\c true

DROP TABLE pct askl i st;

DROP TABLE pct ask;

\c fal se

\p Creating table pctask
CREATE TABLE pctask (
idinteger identity,
name var char (40),
description varchar (256),
url varchar (80),
UNI QUE (nane)
)

\p Creating table pctaskli st
CREATE TABLE pctasklist (
idinteger identity,
host varchar (20) not null,
tasksequence int not null,
pctask integer,
assigndate timestanp default current_timestanp,
conpl et edat e ti nestanp,
show bool ean default true,
FOREI GN KEY (pctask) REFERENCES pct ask,
UNI QUE (host, tasksequence)
)

\p Granting privil eges

GRANT sel ect ON pctask TO public;
GRANT all ON pctask TO tontat;

GRANT sel ect ON pctasklist TO public;
GRANT all ON pctasklist TO tontat;

\p Inserting test records

I NSERT | NTO pct ask (nanme, description, url) VALUES (
"task one', 'Description for task 1', "http://cnn.com);

I NSERT | NTO pct askl i st (host, tasksequence, pctask) VALUES (
"adnt-masq', 101, (SELECT id FROM pctask WHERE nane = 'task one'));

26

HyperS@L Sqi Tool

‘conm' t; ‘

Y ou can execute this SQL file with a Memory Only database with a command like

java -jar $HSQ.DB HOVE/li b/sqgltool.jar --sqgl='
create user tontat password "x";
mem pat h/ t o/ hsqgl db/ sanpl e/ sanpl e. sql

This shows how you can mix SQL on the command line, and SQL inside an SQL file.

Note

The example above uses Bourne shell syntax. C shell syntax would be similar. Y ou would need to use
an SQL file to accomplish this on Windows.

(The--sqgl ="create...;" arguments create an account which the script uses). Y ou should see error messages
between the Cont i nue-on-error...true and Conti nue-on-error. .. fal se. The script purposefully
runs commands that might fail there. The reason the script does this is to perform database-independent conditional
tableremovals. (The SQL clausel F EXI STSismore graceful and succinct, so you may want to use that if you don't
need to support databases which don't support | F EXI STS). If an error occurs when continue-on-error is false, the
script would abort immedately.

Piping and shell scripting

Y ou can of course, redirect output from SglTool to afile or another program.

java -jar $HSQLDB_HOVE/lib/sqltool.jar urlid file.sql > file.txt 2>&1

java -jar $HSQLDB_HOVE/lib/sqltool.jar urlid file.sql 2>& | soneprogram ..

Y ou can type commands in to SglTool while being in non-interactive mode by supplying "-" asthe file name. Thisis
agood way to test how SqglTool will behave when processing your SQL files.

\ java -jar $HSQLDB_HOVE/ |l ib/sqltool.jar urlid -

Thisis how you have SqlTool read itsinput from another program:

Example 1.4. Piping input into Sql T ool

echo "Sonme SQL commands with ' $VARI ABLES ;" |
java -jar $HSQLDB_HOME/lib/sqltool.jar urlid -

For a shell not as graceful as the Bourne-compatible shells, you would need to type this al on the same line (or use
aline-continuation trick).

. Warning

Beware of null stdin to SglTool (or SglFile). At least with Java 6 on UNIX, Syst em i n returns
megabytes of garbage for reads if stdin is closed. | consider this an obvious bug. Therefore, unlike any
other program you would invoke from scripts, check stdin before running any Java program that will
read from it. | consider this a big ugly bug in Java. Thisis not just theoretical, because many remote
execution environments will have stdin closed off.

Make sure that you aso read the Giving SQL on the Command Line section. The - - sql switch is a great facility
to use with shell scripts.

27

HyperS@L SqiTool

Optimally Compatible SQL Files

If you want your SQL scripts optimally compatible among other SQL tools, then don't use any Special or PL Com-
mands. SglTool has default behavior which | think is far superior to the other SQL tools, but you will have to disable
these defaults in order to have optimally compatible behavior.

These switches provide compatibilty at the cost of poor control and error detection.
* --continueOnErr=true

The output will still contain error messages about everything that SglTool doesn't like (malformatted commands,
SQL command failures, empty SQL commands), but SglTool will continue to run. Errors will not cause rollbacks
(but that won't matter because of the following setting).

e --autoCommit

You don't have to worry about accidental expansion of PL variables, since SglTool will never expand PL variables
if you don't set any variables on the command line, or give any "* " PL commands. (And you could not have "* "
commands in acompatible SQL file).

Comments

Comments of the form / *. .. */ or - - behave as a SQL programmer would expect, in al contexts other than in
interactive edit/history commands.

If a comment occurs outside of an SQL statement, SglTool will not send the comment to the database (to improve
performance). Raw mode can be used to send just comments to the database. In order to proactively catch accidents,
SqlTool will complain if you attempt to send an empty SQL statement (i.e., just whitespace) to the database, even
in raw mode.

Special Commands and Edit Buffer Commands in SQL Files

Don't use Edit Buffer / History Commandsin your sql files, because they won't work. Edit Buffer / History Commands
are for interactive use only. (But, seethe Raw Mode section for an exception). Y ou can, of course, use any SglTool
command at all interactively. | just wanted to group together the commands most useful to script-writers.

\q [abort message] Beawarethat the\q command will cause Sql Tool to completely exit. If ascriptx. sql
has a\q command init, then it doesn't matter if the script is executed like

‘ java -jar .../sqgltool.jar urlid a.sql x.sqgl z.sql ‘

or if you use\i to read it in interactively, or if another SQL file uses\i to nest it. If
\q is encountered, SglTool will quit. Seethe SqlTool Procedural Language section
for commands to abort an SQL file (or even parts of an SQL file) without causing
SqlTool to exit.

\q takes an optiona argument, which is an abort message. If you give an abort mes-
sage, the message is displayed to the user and SglTool will exit with afailure status.
If you give no abort message, then SqlTool will exit quietly with successful status.
Asaresult,

Y |

means to make an immediate but graceful exit, whereas

‘ \q Message ‘

28

HyperS@L

SqlTool

\p [text to print]

\i /path/to/file.sql

\o [file/path.txt]

\a[truelfalse]

\c [trueffal se]

means to abort immediately.
Print the given string to stdout. Just give "\p" aloneto print a blank line.

Include another SQL file at this location. You can use this to nest SQL files. For
database installation scripts | often have a master SQL file which includes al of the
other SQL filesin the correct sequence. Be aware that the current continue-upon-error
behavior will apply to included filesuntil such point asthe SQL file runsits own error
handling commands.

Tee output to the specified file (or stop doing so). Seethe Generating Text or HTML
Reports section.

A database-independent way to commit your SQL session. Useful for database which
have no COWM T SQL statement.

This turns on and off SQL transaction autocommits. Auto-commit defaults to false,
but you can change that behavior by using the - - aut oConmi t command-line
switch.

A "true" setting tells SqlTool to Continue when errors are encountered. The current
transaction will not be rolled back upon SQL errors, so if \c is true, then run the
ROLLCACK; command yourself if that's what you want to happen. The default for
interactive use is to continue upon error, but the default for non-interactive use is to
abort upon error. Y ou can override this behavior by using the- - cont i nueOnEr r

command-line switch.

With database setup scripts, | usualy find it convenient to set "true" before dropping
tables (so that things will continue if the tables aren't there), then set it back to false
so that real errorsare caught. DROP TABLE t abl enane | F EXI STS; isamore
elegant, but less portable, way to accomplish the same thing.

Tip

It depends on what you want your SQL filesto do, of course, but | usu-
aly want my SQL files to abort when an error is encountered, without
necessarily killing the SglTool session. If this is the behavior that you
want, then put an explicit\ ¢ f al se atthetop of your SQL fileandturn
on continue-upon-error only for sections where you really want to per-
mit errors, or where you are using PL commands to handle errors man-
ually. This will give the desired behavior whether your script is called
by somebody interactively, from the Sgl Tool command-line, or includ-
ed in another SQL file (i.e. nested).

! | mportant

The default settings are usually best for people who don't want to put in
any explicit \c or error handling code at all. If you run SQL files from
the SglTool command line, then any errors will cause SglTool to roll
back and abort immediately. If you run Sgl Tool interactively and invoke
SQL fileswith\i commands, the scriptswill continue to run upon errors
(and will not roll back). This behavior was chosen because there are lots
of SQL files out there that produce errors which can be ignored; but
we don't want to ignore errors that a user won't see. | reiterate that any

29

HyperS@L SqiTool

and all of this behavior can (and often should) be changed by Special
Commands run in your interactive shell or in the SQL files. Only you
know whether errorsin your SQL files can safely be ignored.

Automation

SqlTool isideal for mission-critical automation because, unlike other SQL tools, SglTool returns a dependable exit
status and gives you control over error handling and SQL transactions. Autocommit is off by default, so you can build
acompletely dependable solution by intelligently using \c commands (Continue upon Errors) and commit statements,
and by verifying exit statuses.

Using the SqlTool Procedural Language, you have ultimate control over program flow, and you can use variables for
database input and output as well as for many other purposes. Seethe SglTool Procedural Language section.

Getting Interactive Functionality with SQL Files

Some script developers may run into cases where they want to run with sgl files but they alwo want SqlTool's inter-
active behavior. For example, they may want to do command recall in the sql file, or they may want to log SqlTool's
command-line prompts (which are not printed in non-interactive mode). In this case, do not give the sql file(s) as an
argument to SglTool, but pipe them in instead, like

‘java-jar $HSQLDB_HOVE/ |l i b/ sgltool .jar urlid < filepathl.sql > /tnp/log.htm 2

or

cat filepathl.sql... |
java -jar $HSQ.DB HOVE/lib/sqgltool.jar urlid > /tnp/log. htm 2>&1

For a shell not as graceful as the Bourne-compatible shells, you would need to type this al on the same line (or use
aline-continuation trick).

Character Encoding

There are several levels of encoding settings. First there are your platform defaults. These can be changed, temporarily
or permanently, with system settings or environmental variables. Java system properties may be used to change the
encodings for the VM run. Finaly, can specify a different encoding in your RC file, as documented in the RC
File Authentication Setup section, though these will not effect stdin or stdout (as explained there). Programmatic
users of Sgl Fi | e have complete control over encoding by setting up Reader sand Pri nt Wi t er s, or by using
constructors with an encodi ng parameter. Devel opers should understand that where a Sql Fi | e constructor takes
aReader oraPrint Wit er parameter, we will not apply encoding settings to them, leaving that up to you.

Generating Text or HTML Reports

This section is about making a file containing the output of database queries. You can generate reports by using
operating system facilities such as redirection, tee, and cutting and pasting. But it is much easier to use the "\0" and
"\H" special commands.

Note

I've neglected the \H feature, because | don't know of anybody using it. Be aware that it writes very old-
fashioned HTML, with no attention to encoding, metadata, style sheets, etc.

30

HyperS@L SqiTool

Procedure 1.4. Writing query output to an external file

1. By default, everthing will be done in plain text. If you want your report to be in HTML format, then give the
special command \ H. If you do so, you will probably want to use filenames with an suffix of ".html" or ".htm"
instead of ".txt" in the next step.

2. Runthecommand\ o path/to/reportfile.txt.From thispoint on, output from your queries will be
appended to the specified file. (I.e. another copy of the output is generated.) Thisway you can continue to monitor
or use output as usua asthe report is generated.

3. When you want SglTool to stop writing to thefile, run\ o (or just quit SglTool if you have no other work to do).
4. If you turned on HTML mode with \ Hbefore, you can run\ Hagain to turn it back off, if you wish.

Itisnot just the output of "SELECT" statements that will make it into the report file, but

Kinds of output that get teed to\o files
e Output of SELECT statements.
» Output of all "\d" Special Commands. (I.e., "\dt", "\dv", etc., and "\d OBJECTNAME").

» Output of "\p" Special Commands. Y ou will want to use this to add titles, and perhaps spacing, for the output of
individual queries.

Other output will go to your screen or stdout, but will not make it into the report file. Be aware that no error messages
will go into the report file. If SglTool isrun non-interactively (including if you give any SQL file(s) on the command
line), SqiTool will abort with an error statusif errors are encountered. The right way to handle errors is to check the
Sl Tool exit status. (The described error-handling behavior can be modified with Sgl Tool command-line switches and
Specia Commands).

. Warning
Remember that \o appends to the named file. If you want anew file, then use anew file name or remove
the pre-existing target file ahead of time.

Tip

So that | don't end up with a bunch of junk in my report file, | usualy leave \o off while | perfect my
SQL. With \o off, | perfect the SQL query until it produces on my screen exactly what | want saved to
file. At this point | turn on\o and run ":/select/;" to repeat the last SQL command containing the given
string ("select" in this example). If | have several complex queries to run, | turn \o off and repeat until
I'm finished. (Every time you turn\o on, it will append to the file, just like we need).

Usually it doesn't come to mind that | need awider screen until aquery produces lines that are too long.
In this case, stretch your window and repeat the last command with the ":;" Edit Buffer Command.

SqlTool Procedural Language
Aka PL

Most importantly, run Sql Tool interactively and give the "*?' command to see what PL commands are available
to you. I've tried to design the language features to be intuitive. Readers experience with significant shell scripting
in any language can probably learn everything they need to know by looking at (and running!) the sample script
sampl e/ pl . sql inyour HyperSQL distribution ! and using the* ? command from within an interactive Sql Tool
session as areference. (By significant shell scripting, | mean to the extent of using variables, for loops, etc.).

31

HyperS@L SqiTool

PL variableswill only be expanded after you run a PL command (or set variable(s) from the command-ling). We only
want to turn on variable expansion if the user wants variable expansion. People who don't use PL don't have to worry
about strings getting accidentally expanded.

All other PL commands imply the "*" command, so you only need to use the "*" statement if your script uses PL
variablesand it is possible that no variables may be set before-hand (and no PL commands have been run previously).
In this case, without "*", your script would silently use aliteral value like "*{x}" instead of trying to expand it. With
apreceding "*" command, PL will notice that the variable x has not been set and will generate an error. (If x had been
set here will be no issue because setting a variable automatically turns on PL variable expansion).

PL is also used to upload and download column values to/from local ASCII files, analogously to the special \b com-
mands for binary files. Thisis explained above in the Interactive Essential PL Command section above.

Variables

e Usethe* |i st commandtolist someor al variables; or * | i st val ues to also seethe values.

e You can set variables using the* VARNAME = val ue command. This document explains elsewhere how you
can set avalues to the contents of files, and to the return value of SQL statements and fetches.

* You can also set variables using the - - set var command-line switch. | give a very brief but useful example of
this below.

» SglTool does not allow for setting system variables. As explained below, they are expanded in the same way as
PL variables.

» Variablesareawaysexpanded in SQL, Special, and PL commandsif they arewritten like* { VARNAME} (assuming
that a PL command has been run previously). Your SQL scripts can give good feedback by echoing the value of
variables with the "\p" special command. Use the construct * { : VARNAME} to expand the variable, but to expand
to azero-length string instead of fail if VARNAME is not set.

» Java system variables work the same exact way, except you use $ instead of * to dereference, like so:
${user. nane}.

e Variables are normally written like * VARNAME in logical expressions to prevent them from being evaluated too
early. See below about logical expressions.

* You can't do math with expression variables, but you can get functionality like the traditional f or (i = 0; i
< X; | ++) by appending to avariable and testing the string length, like

* while (*i < ${x})
o= %},

i will be agrowing line of dots.

» Variable names must not contain white space, or the characters"}" or "=".

Macros

Macros are just shortcut commands that you can run in place of the full commands which they stand for. Macros stand
for SQL, Special or PL commands, whereas PL variables can only be used for elements within acommand. It isvery
easy to define, list, and use macros. Run the command "/?* to see how. If you often run a particular query, then for
the effort of about 5 extra keystrokes, you can define a macro for it so that you can enter just "/g;" to run it, whether
the original query is 1 line or 40 lines. (You can use any name in place of "q", and the target command can be any
kind of SQL, special, or PL command).

When you run/use a macro, you can append to the macro value. appendage in the "/?" listing shows where you can
append additional text to the original command. So, if you define

32

HyperS@L SqiTool

‘ sgl > /= nyworkers SELECT name FROM enpl oyees

, you could narrow the query variously during different macro invocations, like

sql > / mywor kers WHERE dept = 20;
sql > / mywor kers WHERE nane |i ke 'Karen% ;

Just like when recalling a command from history, you use";" to execute even Special and PL macro commands.

sgl > /= notate Work conpl eted by
sgl > /notate Bl aine;

If you don't type the ;, you will just recall the command to the buffer (from which you can execute or edit it, if you
wish to).

To make amacro for amult-line SQL statement, you use the "/= name :" construct. First, get the target command into
the command buffer. If you have already run the command, then run ":h" to see the command number and load it to
the buffer like ":13". If you haven't run the command yet, then just enter the command, but end it with a blank line

(and no semi-colon). Y ou can check the buffer with ":b" to make sure it is what you want. Then just run "/= name :"
to define a macro with name "name".

PL Sample

Hereisashort SQL file that gives the specified user write permissions on some application tables.

Example 1.5. Simple SQL fileusing PL

/*
grantwite.sql

Run Sql Tool Iike this:
java -jar path/to/sqgltool.jar -setvar=USER=debbie grantwite. sql
*/

/* Explicitly turn on PL variable expansion, in case no variables have
been set yet. (Only the case if user did not set USER).
*/

*

GRANT al |l ON book TO *{USER};
GRANT all ON category TO *{USER};

Note that this script will work for any (existing) user just by supplying a different user name on the command-line.
I.e., no need to modify the tested and proven script. Thereis no need for aconmi t statement in this SQL file since
no DML is done. If the script is accidentally run without setting the USER variable, SglTool will give a very clear
notificaton of that.

The purpose of the plain "*" command is just so that the *{ USER} variables will be expanded. (This would not be
necessary if the USER variable, or any other variable, were set, but we don't want to depend upon that).

Logical Expressions

Logical expressions occur only inside of logical expression parenthesesin PL statements. For example,i f (*var 1
> astring) andwhil e (*checkvar) . (The parentheses after "foreach" do not enclose a logical expression,
they just enclose alist).

There is a critica difference between * { VARNAME} and * VARNANME inside logical expressions. * { VARNANME} is
expanded one time when the parser first encountersthe logical expression. * VARNAME is re-expanded every time that

33

HyperS@L SqiTool

the expression is evaluated. So, you would never want to code* while (*{X} < 5) becausethe statement will
always be true or aways be false. (I.e. the following block will loop infinitely or will never run).

Don't use quotes or whitespace of any kind in * { VARNAME} variablesin expressions. (They would expand and then
the expression would most likely no longer be avalid expression aslisted in the table below). Quotes and whitespace
arefinein* VARNAME variables, but it isthe entire value that will be used in evaluations, regardless of whether quotes
match up, etc. |.e. quotes and whitespace are not special to the token evaluator.

Logical Operators

TOKEN Thetoken may bealiteral, a* { VARNAVE} whichisexpanded early, or a* VARNANVE
which is expanded late. (You usually do not want to use *{ VARNAME} in logical
expressions). Falseif the token is not set, empty, or "0". True otherwise.

TOKEN1 == TOKEN2 Trueif the two tokens are equivalent "strings'.

TOKEN1 <> TOKEN2 Ditto.

TOKEN1 >< TOKENZ2 Ditto.

TOKEN1 > TOKEN2 Trueif the TOKENL1 string islonger than TOKENZ or isthe samelength but is greater

according to a string sort.
TOKEN1 < TOKEN2 Similarly to TOKEN1 > TOKEN2.
I LOGICAL_EXPRESSION Logica negation of any of the expressions listed above.

*VARNAMEs in logical expressions, where the VARNAME variable is not set, evaluate to an empty string. Therefore
(*UNSETVAR = 0) would be false, even though (* UNSETVAR) by itself is fase and (0) by itself is false.
Another way of saying thisisthat * VARNAME in alogical expressionisequivalent to*{:VARNAME} out of alogical
expression.

When devel oping scripts, you definitely use Sl Tool interactively to verify that SqlTool evaluateslogical expressions
asyou expect. Just run* i f commands that print something (i.e. \p) if the test expression istrue.

Flow Control

Flow control works by conditionally executing blocks of Commands according to conditions specified by logical
expressions.

The conditionally executed blocks are called PL Blocks. These PL Blocks always occur between a PL flow control
statement (like* foreach, *while, * if)andacorresponding* end PL Command (like* end f or each).

The values of control variables for foreach and while PL blocks will change as expected.

Thereare* break and* conti nue, which work as any shell scripter would expect them to. The* br eak
command can also be used to quit the current SQL file without triggering any error processing. (l.e. processing will
continue with the next line in the including SQL file or interactive session, or with the next SQL fileif you supplied
multiple on the command-line).

Example

Below is the example SQL file sanpl e/ pl . sqgl , which shows how to use most PL features 1f you have a
guestion about how to use a particular PL feature, check thisfilein your distrubition before asking for help. Definitely
giveit arun, like

‘j ava -jar $HSQLDB HOVE/ |i b/ sqgltool .jar mem $HSQLDB_HOVE/ pl . j ar ‘

34

HyperS@L Sqi Tool

Example 1.6. SQL File showing use of most PL features

/*
$1d: pl.sqgl 3353 2009-12-15 19:52:13Z unsaved $
SQL File to illustrate the use of Sqgl Tool PL features
I nvoke Iike
java -jar .../hsqgldb.jar .../pl.sqgl nmem
-- blaine
*/

*if (! *MYTABLE)
\'p MYTABLE vari abl e not set!
/* You could use \q to Quit Sqgl Tool, but it's often better to just
break out of the current SQ file.
I f people invoke your script from Sgl Tool interactively (with

\i yourscriptname.sql) any \qg will kill their Sqgl Tool session. */
\p Use arguments "--setvar=MTABLE=nyt abl enane" for Sql Tool
* break
* end if

/* Turning on Continue-upon-errors so that we can check for errors oursel ves.*/
\c true

\p
\p Loading up a table named ' *{ MYTABLE}' ..

/* This sets the PL variable '"retval' to the return status of the follow ng
SQL command */

* retval ~

CREATE TABLE *{ MYTABLE} (
i int,
s var char (20)

)

\'p CREATE status is *{retval}

\p

/* Validate our return status. In |ogical expressions, unset variables |ike
*unsetvar are equivalent to enpty string, which is not equal to O
(though both do evaluate to false on their own, i.e. (*retval) is false
and (0) is false */

*if (*retval = 0)
\'p Qur CREATE TABLE command fail ed
* break

* end if

/* Default Continue-on-error behavior is what you usually want */
\c fal se

\p

/* Insert data with a foreach | oop
These val ues could be froma read of another table or fromvariabl es
set on the comand line |ike
*/
\p Inserting some data int our new table (you should see 3 row update nessages)
* foreach VALUE (12 22 24 15)
* if (*VALUE > 23)
\'p Skipping *{VALUE} because it is greater than 23
* continue
\'p YOU WLL NEVER SEE THI S LI NE, because we just 'continued'
*end if
I NSERT | NTO *{ MYTABLE} VALUES (*{VALUE}, 'String of *{VALUE}")
* end foreach
\p

* themax ~
/* Can put Special Conmands and conments between "* VARNAME ~" and the target
SQL statenent. */

35

HyperS@L SqiTool

\p We're saving the max value for later. You'll still see query output here:
SELECT MAX(i) FROM *{ MYTABLE};

/* This is usually unnecessary because if the SELECT failed, retval would
be undefined and the follow ng print statement would nmake Sgl Tool exit with
a failure status */
*if (! *themax)
\p Failed to get the max val ue.
/* It's possible that the query succeeded but themax is "0".
You can check for that if you need to. */

* break

\'p YOU WLL NEVER SEE THI S LI NE, because we just 'broke'.
* end if
\p

\p The results of our work:
SELECT * FROM *{ MYTABLE} ;
\p MAX val ue is *{themax}

\p
\'p Everything worked.

Chunking

We hereby call the ability to transmit multiple SQL commandsto the database in one transmission chunking. Normally
it's best to send SQL statements to the database one-at-a-time. That way, the database can give you or your program
feedback about each statement. But there are situations where it is more important to transmit multiple-statements-at-
artime than to get feedback for each statement individually.

Why?

The first general reason to chunk SQL commands is performance. For standalone databases, the most common per-
formance bottleneck is network latency. Chunking SQL commands can dramatically reduce network traffic.

The second reason isthat there are a couple SQL commands which requiretheterminating ;" to be sent to the database
engine. For simplicity and efficiency, it's usually better for general JDBC clients like SglTool to strip off the final
delimiter. Raw commands retains everything that the user types.

The third general reason to chunk SQL commandsisif your database requires you to send multiple commandsin one
transmission. Thisis usually the case with the following types of commands:

* Nested SQL commands, like the nested CREATE SCHEMA variant, and most stored procedure, function, and
trigger definitions.

» Commands containing non-quoted programming language to be interpreted by the database engine. Definitions of
stored procedures, function, and triggers often contain code like this.

How?

Use raw mode. Go to the Raw Mode section to see how. Y ou can enter any text at all, exactly how you want it to be
sent to the database engine. Therefore, in addition to chunking SQL commands, you can give commands for non-SQL
extensions to the database. For example, you could enter JavaScript code to be used in a stored procedure.

Raw Mode

Y ou begin raw mode by issuing the Special Command "\.". Y ou can then enter as much text in any format you want.
When you are finished, enter aline consisting of only ".;" to store the input to the edit buffer and send it to the database
server for execution.

36

HyperS@L SqiTool

This paragraph applies only to interactive usage. I nteractive users may may end the raw input with ":." instead of ".;".
This will just save the input to the edit buffer so that you can edit it and send it to the database manually. You can
look at the edit buffer with the ":b" Buffer Command. Y ou would normally use the command ":;" to send the buffer to
the database after you are satisfied with it. You'll notice that your prompt will be the "raw" prompt between entering
"\." and terminating the raw input with ".;" or ":.".

Just by running commands beginning with BEG N, DECLARE, CREATE f uncti on, or CREATE procedure,
your SglTool session will automatically be changed to Raw mode, exactly asif you had entered "\.". That's because
these commands are universally used to define stored procedures or functions, and these commands require raw mode
(as explained in the previous section).

Example 1.7. Interactive Raw M ode example

sgl > \.

Enter RAWSQ.. No \, :, * conmmands.

End with a line containing only ".;" to send to database,
or ":." to store to edit buffer for editing or saving.

raw> |ine one;

raw> |ine two;

raw> |line three;

raw> .

Raw SQL chunk noved into buffer. Run ":;" to execute the chunk.
sql > :;

Executing conmand from buffer:

line one;

line two;

line three;

SQL Error at 'stdin' line 13:

"line one;

l'ine two;

line three;"

Unexpected token: LINE in statenent [Iline]
sql >

The error message "Unexpected token: LINE in statement [ling]" comes from the database engine, not SglTool. All
three lines were transmitted to the database engine.

Edit Buffer Commands are not available when running Sgl Tool non-interactively.

SQL/PSM, SQL/JRT, and PL/SQL

This section covers database-engine-embedded |anguages, which are often used in the definition of stored procedures,
stored functions, and triggers. SQL/ PSM SQL/ JRT, and PL/ SQ are well known examples. We prefer SQL/ PSM
and SQL/ JRT because unlike the alternatives, they are based on open SQL specifications.

Note

PL/SQL isnot thesameasPL. PL isthe procedural language of SqglFile and isindependent of your back-
end database. PL commands always begin with *. PL/SQL is an Oracle-specific extension processed on
the server side. You can not intermix PL and any server-embedded language (except for setting a PL
variable to the output of execution), because when you enter server language to SglTool, that input is
not processed by SqlFile.

Use Raw Mode to send server-language code bl ocksto the database engine. Y ou do not need to enter the"\." command
to enter raw mode. Just begin anew SglTool command line with "DECLARE", "BEGIN", "CREATE FUNCTION",

37

HyperS@L SqiTool

or "CREATE PROCEDURE", and SqglTool will automatically put you into raw mode. See the Raw Mode section
for details.

The following sample SQL fileresidesat sanpl e/ pl sql . sgl in your HyperSQL distribution ! This script
will only work with Oracle, only if you have permission to create the table "T1" in the default schema, and if that
object does not already exist.

Example 1.8. PL/SQL Example

/
$ld: plsqgl.sgl 826 2009-01-17 05:04:52Z unsaved $

This exanple is copied fromthe "Sinple Programs in PL/SQ."
exanpl e by Yu-May Chang, Jeff Ul man, Prof. Jennifer Wdom at
the Standord University Database G oup's page

http://ww db. st anf ord. edu/ ~ul | man/ f cdb/ or acl e/ or - pl sql . ht m

I have only renpved sone blank lines (in case sonebody wants to
copy this code interactively-- because you can't use bl ank
lines inside of SQL commands in non-raw node Sgl Tool when running
it interactively); and, at the bottom| have replaced the
client-specific, non-standard command "run;" w th Sqgl Tool's

* correspondi ng command ".;" and added a plain SQ. SELECT command
* to show whether the PL/ SQL code worked. - Blaine

*/

5k ok ok Ok % % %k 3k ok %

CREATE TABLE T1(
e | NTEGER,
f | NTEGER
)
DELETE FROM T1;
I NSERT | NTO T1 VALUES(1, 3);
I NSERT | NTO T1 VALUES(2, 4);

/* Above is plain SQ.; belowis the PL/SQ. program */
DECLARE

a NUMBER
b NUMBER,
BEG N
SELECT e,f INTO a,b FROM T1 WHERE e>1;

I NSERT | NTO T1 VALUES(b, a);

/** The statenent on the previous line, ".;" is Sgl Tool specific
* This conmand says to save the input up to this point to the
* edit buffer and send it to the database server for execution
* | added the SELECT statenent below to give inmm
*/

/* This should show 3 rows, one containing values 4 and 2 (in this order)...*/
SELECT * FROM t 1;

Notethat, inside of raw mode, you can use any kind of formatting that your database engine needs or permits: Whatever
you enter-- blank lines, comments, everything-- will be transmitted to the database engine.

Thisfileresidesat testrun/sqltool/sqgljrt.sql

38

HyperS@L SqiTool

Example 1.9. SQL/JRT Example

/
$1d: sqgljrt.sgl 3353 2009-12-15 19: 52:13Z unsaved $

* %k ok ok %

Tests SQL/JRT
/

create function dehex(VARCHAR(80), | NTEGER)
returns | NTEGER
no sql
| anguage j ava
external name ' CLASSPATH: j ava. |l ang. | nt eger. val ue&

CALL dehex('12', 16);
If (? 1= 18)

\'q SQL/JRT function failed
*end if

Thisfileresidesat testrun/sqltool/sqgl psm sql

Example 1.10. SQL/PSM Example

/*
* $ld: sqgl psmsqgl 826 2009-01-17 05:04:52Z unsaved $

* Tests SQL/JRT
*/

create tabl e custoners(
id | NTEGER default 0, firstname VARCHAR(50), |astnanme VARCHAR(50),
entrytime TI MESTAMP);

create procedure new custoner(firstnanme varchar(50), |astnanme varchar(50))
nodi fies sql data
insert into custoners val ues (
default, firstnanme, |astnane, current_tinmestanp)

SELECT count (*) FROM cust oners;

If (?2 1= 0)
\'q SQL/ PSM preparation failed
*end if
CALL new _custoner (' blaine', 'sinpson');

SELECT count (*) FROM cust oners;
Ifo(? 1= 1)

\'q SQL/ PSM procedure failed
*end if

Delimiter-Separated-Value Imports and Exports

SglTool's DSV functionality encompasses what many users will recognize as CSV export, as well as portable backup
or transfer of data. Those familiar with Oracle's SQL* Loader will recognize the extreme usefulness of the feature set.
Besides database- and platform-independent data backups, exports can be used to depl oy data setswith applications, to
transfer data among multiple database instances (even drastically different database instances such as SQL Server and
HyperSQL), and to properly change control data sets with a content management system such as a collaboration server
or Subversion. To jump way ahead for a moment to whet your appetite, here is a sample import reject report which
will can be generated automatically for you upon import just by setting the PL variable* DSV_REJECT _REPORT (to
the desired destination HTML file name).

39

HyperS@L Sqi Tool

& SqiTool DEY Reject Report - Mozilla Firefox

File Edit ¥iew History Bookmarks Taals Help

@& o - 20 @ |9 flesmpisample-rzjzct html - | |[C]~ A e (B -
*§ 55 - e||ME API |g]J25E APl |&|JOGL APl |&|Ant Manual ®=CSS Ref seHTML 4 Ret 25 o MJava

g SqiTool 05... ¥ |[el XStream (4. 3 | @|JDK 6 Doc... # | Sun Cerifi.. 3 |B CNH.com- . 3 |+ MonkeyEn... 3§ | =
Impert performed Mon Dec 14 20:40:40 EST 2009 wath Sallool

Input DEV file sample.dsv
Feject DEV fle: /tmp/sample-reject.dsy

The comrespending records in fanplaample-reject dav’ are at kne munbers of (reject #+ 10, 2ince the header record ecoupies the first hne

input | bad colwmmn

rej. # . ; reason
15 | line # | (if known) —
Bad datestime walue 'not a date 0:03:00°
1 11 d java.lang.Illegal&rgunentException: Tinestanp format musk be yyyy-nn-dd hh:onm:ss[. FFFFFFFFe)
- 14 integrity constraint vielatien: NOT KWULL check constraink: SYS_CT_1882E table: SAMPLETABLE

Import surmmary (#'-slaps / rejects [mserts): 3 /2/3,

AnlFile revisiom 3347
Dare

A DSV Import reject report
If you wish to, you can review the reject report before deciding whether to commit or roll back the inserts.

Note

Thisfeature is independent of HyperSQL Text Tables. (See the Text Tables chapter of the HyperSQL
User Guide [http://hsgldb.org/doc/2.0/guide/index.html] for details about them). a server-side feature
of HyperSQL. It makes no difference to Sgl Tool whether the source or target table of your export/import
is a memory, cache, or text table. Indeed, like all features of SglToal, it works fine with other JDBC
databases. It works great, for example to migrate data from atable of one type to atable of another type,
or to another schema, or to another database instance, or to another database system.

This feature is what most business people call "CSV", but these files are more accurately called Delimiter Separated
Value files because the delimiter is usually not a comma, and, more importantly, we purposefully choose an effective
delimiter instead of the CSV method of using a delimiter which works in some cases and then use quotes and back-
dlashesto escape occurrence of the delimiter intheactual data. Just by choosing adelimiter which never needs escaping,
we eliminate the whole mess, and the data in our files always looks just like the corresponding data in the database.
To make this CSV / Delimiter-separated-value dintinction clear, | use the suffix ".dsv" for my datafiles. This leads
me to stipulate the abbreviation DSV for the Delimiter Separated Value feature of HyperSQL.

Usethe\ x command to eXport atableto aDSV file, and the\ mcommand to iMport aDSV file into a pre-existing
table.

The row and column delimiters may be any String (or even aregular expression for import), not just asingle character.
And just as the delimiter capability is more general than traditional CSV delimiters, the export function is also more
general than just a table data exporter. Besides the trivial generalization that you may specify aview or other virtua
table name in place of atable name, you can alternatively export the output of any query which produces normal text

40

http://hsqldb.org/doc/2.0/guide/index.html
http://hsqldb.org/doc/2.0/guide/index.html
http://hsqldb.org/doc/2.0/guide/index.html

HyperS@L SqiTool

output. A benefit to thisapproachisthat it allows you to export only some columns of atable, and to specify aWHERE
clause to narrow down the rows to be exported (or perform any other SQL transformation, mapping, join, €tc.). One
specific use for thiswould be to exclude columns of binary data (which can be exported by other means, such asa PL
loop to store binary values to files with the \bd command).

Note that theimport command will not create anew table. Thisis because of theimpossibility of guessing appropriate
types and constraints based only on column names and a data sampling (which is all that a DSV-importer has access
to). Therefore, if you wish to populate a new table, create the table before running the import. The import file does
not need to have data for al columns of atable. The only required columns are those required by database constraints
(non-null, indexes, keys, etc.) One specific reason to omit columnsisif you want values of some columnsto be created
automatically by column DEFAULT settings, triggers, HyperSQL identity sequences, etc. Another reason would be
to skip binary columns.

Simple DSV exports and imports using default settings

Even if you need to change delimiters, table names, or file names from the defaults, | suggest that you run one export
and import with default settings as a practice run. A memory-only HyperSQL instanceisideal for test runslike this.

This command exports the table i cf . pr oj ect s to the file pr oj ect s. dsv in the current directory (where you
invoked SglTool from). By default, the output file name will be the specified source table name plus the extension
. dsv.

Example 1.11. DSV Export Example

SET SCHEMA i cf;
\'x projects

We could aso have run\ x i cf. projects (which would have created a file named i cf . proj ects. dsv)
instead of changing the session schema. In this example we have chosen to make the export file name independent of
the schemato facilitate importing it into a different schema.

Takealook at the output file. Notice that thefirst line consists of column names, not data. Thislineis present because
it will be needed if the file isto used for a DSV import. Notice the following characterstics about the export data.
The column delimiter is the pipe character "|'. The record delimiter is the default line delimiter character(s) for your
operating system. The string used to represent database NULLs is[nul |] . See the next section for how to change
these from their default values.

. Warning

Y ou can not DSV import Array valueswhere any Array elements contain commas, for example an Array
of VARCHARs which contain one or more commas. There is no such limitation on DSV exports, which
you can use for purposes other than Sgl Tool importing, or you could use a script to change the commas
to some other character.

This command imports the data from the file pr oj ect s. dsv in the current directory (where you invoked Sql Tool
from) into the table newschenma. pr oj ect s. By default, the output table name will be the input filename after
removing optional leading directory and trailing final extension.

Example 1.12. DSV Import Example

SET SCHEMA newschenms;
\'m proj ects. dsv

If the DSV file was named with the target schema, you would have skipped the SET SCHEMA command, like\ m
newschema. pr oj ect s. dsv. In order to allow for more flexibility, the default input input delimiters are not ex-

41

HyperS@L SqiTool

actly the same as the output delimiters. The input delimiters are regular expressions. The input column delimiter hap-
pens to be the regular expression corresponding exatly to "|"; but theinput record delimiter matches UNIX, Windows,
Mac, and HTTP line breaks.

Specifying queries and options

For a hands on example of a DSM import which generates an import report and uses some other options, change to
directory HSQLDB/ sanpl e and play with theworking script dsv- sanpl e. sql ! You can execute it like

‘ java -jar ../lib/sqgltool.jar nmem dsv-sanple. sql ‘

(assuming that you are using the supplied sql t ool . r ¢ file or have have urlid memset up).

The header lineinthe DSV fileisrequired at thistime. (If thereis user demand, it can be made optional for exporting,
but it will remain required for importing).

Your export will fail if the output column or record delimiter, or the null representation value occurs in the data
being exported. You change these values by setting the PL variables * DSV_COL_DELI M * DSV_ROW DELI M
*DSV_NULL_REP. Notice that the asterisk is part of the variable names, to indicate that these variables are used by
Sl Tool internally. When specifying delimiters, you can use the escape segpences\n, \r, \f, \t, \\, and decimal, octa or
hex specifications like \20, \020, \0x20. For example, to change the column delimiter to the tab character, you would
give the command

\ * *DSV_COL_DELIM = \t |

The input (\m) delimiter values, * DSV_CCOL_SPLI TTER and * DSV_ROW SPLI TTER, are set using normal Perl/
Java regexp syntax. There are escapes for specifying specia characters, and anything else you would need. Input vs.
output row and column delimiters are easily distinguished by containing "SPLITTER" for splitting input (\m) files; or
"DELIM" for the delimiters that we will write (\x) among the data.

For imports, you must always specify the source DSV file path. If you want to export to adifferent file than onein the
current directory named according to the source table, set the PL variable* DSV_TARGET _FI LE, like

\ * *DSV_TARGET_FILE = /tnp/dtbl . dsv |

For exports, you must always specify the source table name or query. If you want to import to a table other than that
derived from the input DSV file name, set the PL variable * DSV_TARGET_TABLE. The table name may contain a
schema name prefix.

You don't need to import all of the columns in a data file. To designate the fields to be skipped, iether set the PL
PL variable * DSV_SKI P_COLUMNS, or replace the column names in the header line to "-" (hyphen). The value
of * DSV_SKI P_COLUM\S is case-insensitive, and multiple column names are separated with white space and/or
commeas.

Y ou can specify aquery instead of atablename with the\x command in order to filter or transform datafrom atable or

view, or to export the output of ajoin, etc. You must set the PL variable * DSV_TARGET_FI LE, as explained above
(since there is no table name from which to automatically map afile name).

Example 1.13. DSV Export of an Arbitrary SELECT Statement

* *DSV_TARCGET_FI LE = outfile.txt
\x SELECT entrydate, 2 * aval "Double aval", nodtime FROM bs. dt bl

Note that | specified the column label alias "Double aval" so that the label for that column in the DSV file header
will not be blank.

42

HyperS@L SqiTool

By default, imports will abort as soon as a error is encountered during parsing the file or inserting data. If you invoke
Sl Tool with aSQL script on the command line, thefailurewill cause Sgl Tool toroll back and exit. If runinteractively,
you can decide whether to commit or roll back the rows that inserted before the failure. Y ou can modify this behavior
with the\aand \c settings.

If you set either aregject dsv file or areject report file, then failures during imports will be reported but will not cause
the import to abort. When run in this way, SglTool will give you a report at the end about how many records were
skipped, rejected, and successfully inserted. The reject dsv file isjust a dsv file with exact copies of the dsv records
that failed to insert. The reject report fileis a HTML report which lists, for every rejected record, why that record
was rejected. \ n?? will show you that the required PL variables for this functionality are* DSV_REJECT _FI LE and
*DSV_REJECT_REPORT. In both cases, you set the variable value to the path of the file which SqlTool will create.

To alow for user-friendly entry of headers, we require that tablesfor DSV import/exports use standard column names.
I.e., no column names that require quoting. The DSV import and export parsers are very smart and user-friendly. The
data types of columns are checked so that the parser can make safe assumptions about white space and blank entries
in the data. If a column is a JDBC Boolean type, for example, then we know that afield value of " True " obviously
means "True", and that a field value of "" obviously means null. Since we require vanilla style column names, we
allow white space anywhere in the header column. We alow blank lines anywhere (where "lines' are delimited by
*DSV_ROW_DELIM). By default, commented lines are ignored, and the comment character can be changed from
its default value.

Run the command "\x?' or "\m?" to see the several system PL variableswhich you can set to adjust reject file behavior,
commenting behavior, and other DSV features.

Y ou can aso define some settings right in the DSV file, and you can even specify multiple header linesin a single
DSV file. | usethislast feature to import data from one data set into multple tables that are joined. Since | don't have
any more time to dedicate to explaining al of these features, I'll give you some examples from working DSV files
and let you take it from there.

Example 1.14. Sample DSV header switch settings

RCS keyword was here.

header swi t ch{
i tendef: nane| - | - | har dness| br eakdc]| -
si npl ei t endef : i t endef _nane| maxval ue| wei ght | - | - | maxhp

}

I'll just note that the prefixes for the header rows must be of format target-table-name + . You can use * for target-ta-
ble-name here, for the obvious purpose.

Example 1.15. DSV tar gettable setting

‘ targettabl e=t ‘

This last example is from the SglTool unit test filedsv-t ri nmmi ng. dsv. These special commands must be at the
top of the file (before any normal data or header lines).

Thereisalso the* DSV_CONST_COL S setting, which you can use to automatically write static, constant valuesto the
specified columns of al inserted rows.

Unit Testing SqglTool

The SqlTool unit testsreside at testrun/sgltool inthe HyperSQL source coderepository. Just runther unt est s. bash
script from that directory to execute all of thetests. Asyou can see, the test runner, unfortunately, requires aBash shell

43

HyperS@L Sqi Tool

at thistime. Read the file README. t xt to find out all about it, including everything you'd need to know to test your
own scripts or to add more unit test scripts for SglTool.

HyperS@L

Chapter 2. Hsqgldb Test Utility

Theor g. hsql db. t est package contains a number of tests for various functions of the database engine. Among
these, the Test Ut i | class performs the tests that are based on scripts. To run the tests, you should compile the
hsql dbt est . j ar target with Ant and JUnit.

The Test Ut i | class should be run in the /testrun/hsgldb directory of the distributed files. It then runs the set of
TestSelf*.txt filesin the directory. To start the application in Windows, change to the directory and type:

‘ java org. hsqgl db.test. Test Uti |

All filesin the working directory with names matching TestSelf*.txt are processed in alphabetical order.

You can add your own scripts to test different series of SQL queries. The format of the TestSelf*.txt file is smple
text, with some indentation and prefixesin the form of Java-style comments. The prefixes indicate what the expected
result should be.

The classor g. hsql db. t est. Test Scri pt Runner is amore general program which you can use to test any
script files which you specify (with scripts of the same exact format as described below). For example,

‘java org. hsqgl db. test. Test Scri pt Runner --urlid=nem scriptl.tsql script2.sql ‘

Y ou must have the HSQL DB classes, including the util and test classes, in your CLASSPATH. The urlid must be set up
inan RCfileasexplained inthe RC File Authentication Setup section. Usether cf i | e= argument to specify an RC
file other than the default of t est scri pt runner. r ¢ inthe current directory. To see al invocation possibilities,
just run TestScriptRunner with no arguments at all. TestScriptRunner can run tests sequentially (the default) or in
simultaneous asynchronous threads.

» Comment lines must start with -- and are ignored

* Lines starting with spaces are the continuation of the previous line (for long SQL statements)

SQL statements with no prefix are simply executed.

» Theremaining itemsin this list exemplify use of the available command line-prefixes.

The /*s*/ option stands for silent. It is used for executing quries regardless of results. Used for preparation of tests,
not for actual tests.

‘/*s*/ Any SQL statenment - errors are ignored ‘

» The/*c<rows>*/ optionisfor SELECT queriesand assertsthe number of rowsin the result matches the given count.

‘/*c<roms>*/ SQ statement returning count of <rows> ‘

e The /*u*/ option is for queries that return an update count, such as DELETE and UPDATE. It asserts the update
count matches.

‘/*u<count>*/ SQ. statenment returning an update count equal to <count> ‘

» The /*e*/ option asserts that the given query resultsin an erros. It is mainly used for testing the error detection
capabilities of the engine. The SQL State of the expected error can be defined, for example /*e42578*/, to verify
the returned error. This option can be used with syntactically valid queries to assert a certain state in the database.
For example a CREATE TABLE can be used to assert the table of the same name already exists.

‘/*e*/ SQL statenent that should produce an error when executing ‘

e The/*r...*/ option asserts the SELECT query returns asingle row containing the given set of field values.

45

HyperS@L Hsgldb Test Utility

[*r<stringl>, <string2>*/ SQL statement returning a single row ResultSet equal to the specified
val ue

» Theextended /*r...*/ option assertsthe SELECT query returnsthe given rows containing the given set of field values.

[*r
<stringl>, <string2>
<stringl>, <string2>
<stringl>, <string2>
*/ SQL statement returning a nultiple row ResultSet equal to the specified val ues

(note that the result set lines are indented).

» The/*d*/ directive just displays the supplied text.

‘/*d*/ Sonme message ‘

e The/*w MILLIS*/ directive causes the test to Wait for a specified number of millisedonds.

‘/*W 1000*/ Optional nessage ‘

e The *w ENFORCE_SEQUENCE WAITER_NAME*/ directive causes the test to Wait for the specified Wait-
er. A waiter is just name that is used to associate a /*w*/ directive to its corresponding /*p*/ directive. The
ENFORCE_SEQUENCE argument must besettot r ue or f al se to specify whether to fail unlessthe /*p*/ com-
mand runs after the /*w*/ command is waiting.

‘/*MItrue script4*/ Optional nessage ‘

e The/*p ENFORCE_SEQUENC WAITER_NAME*/ directiveisthe peer directiveto /*w*/, which causesawaiting
thread to Proceed.

‘/*p true script4*/ Optional nessage ‘

« All the options are lowercase |etters. During development, an uppercase can be used for a given test to exclude a
test from the test run. The utility will just report the test blocks that have been excluded without running them. Once
the code has been devel oped, the option can be turned into lowercase to perform the actual test.

See the TestSelf*.txt filesin the /testrun/hsgldb/ directory for actual examples.

The String ${t i mest anp} may be used in script messages (like in /*d*/, *w*/, [*p*/). It expands to the current
time, down to the second. For example,

/*d*/ 1t is now ${tinestanp}

46

HyperS@L

Chapter 3. Database Manager

Fred Toussi, The HSQL Development Group
Blaine Simpson, The HSQL Development Group

Brief Introduction

The Database Manager tool is a simple GUI database query tool with a tree display of the tables. Both AWT
and SWING versions of the tool are available and work amost identically. The AWT version class name is
org.hsgldb.util.DatabaseM anager; the SWING version, org.hsgldb.util.DatabaseM anagerSwing. The SWING version
has more refinements than the AWT version.

The AWT version of the database manager can be deployed as an applet in a browser. A demo HTML file with an
embedded Database Manager isincluded in the /demo directory.

When the Database Manager is started, a dialogue alows you to enter the JIDBC driver, URL, user and password for
the new connection. A drop-down box, Type, offers preset valuesfor JDBC driver and URL for most popul ar database
engines, including HSQLDB. Once you have selected an item from this drop-down box, you should edit the URL
to specify the details of the database or any additional properties to pass. You should aso enter the username and
password before clicking on the OK button.

The connection dialogue allows you to save the settings for the connection you are about to make. Y ou can then access
the connection in future sessions. To save a connection setting, enter aname in the Setting Name box before clicking
on the OK button. Next time the connection dialogue is displayed, the drop-down box labeled Recent will include
the name for all the saved connection settings. When you select a name, the individual settings are displayed in the
appropriate boxes.

The small Clr button next to the drop-down box allows you to clear all the saved settings. If you want to modify an
existing setting, first select it from the drop-down box then modify any of the text boxes before making the connection.
The modified values will be saved.

Most SWING menu items have context-sensitive tool tip help text which will appear if you hold the mouse cursor still
over the desired menu item. (Assuming that you don't turn Tooltips off under the Help menu.

The database object treein the SWING version allows you to right click on the name of atable or column and choose
from common SQL statements for the object, for example SELECT * FROM thistable ... If you click on one of the
given choices, the sample statement is copied to the command window, where you can modify and completeit.

The DatabaseM anagers do work with HSQL DB servers serving TLS-encrypted JDBC data. See the TLS section of
the Listeners chapter of the HyperSQL User Guide [distro_baseurl DEFAULTVAL/guide/index.html]

. Tip

If you are using DatabaseM anagerSwing with Oracle, you will want to make sure that Show row counts
and Show row counts are both off before connecting to the database. Y ou may also want to turn off Auto
tree-update, as described in the next section.

Auto tree-update

By default, the object treein the left panel is refreshed when you execute DDL which may update those objects. If you
are on aslow network or performance-challenged PC, use the view / Auto-refresh tree menu item to turn it off. You
will then need to use the viewRefresh tree menu item every time that you want to refresh the tree.

47

distro_baseurl_DEFAULTVAL/guide/index.html
distro_baseurl_DEFAULTVAL/guide/index.html

HyperS@L Database Manager

Note

Auto-refresh tree does not automatically show all updates to database objects, it only refreshes when
you submit DDL which may update database objects. (This behavior is a compromise between utility
and performance).

Automatic Connection

You can use command-line switches to supply connection information. If you use these switch(es), then the con-
nection dialog window will be skipped and a JDBC connection will be established immediately. Assuming that the
hsql db. j ar (or an dternative jar) are in your CLASSPATH, this command will list the available command-line

options.

java org. hsqgl db. util.Dat abaseManager Swi ng --hel p ‘

It's convenient to skip the connection dialog window if you always work with the same database account.

Warning

Use of the --password switch is not secure. Everything typed on command-lines is generally available
to other users on the computer. The problem is compounded if you use a hetwork connection to obtain
your command line. The RC File section explains how you can set up automatic connections without
supplying a password on the command line.

RC File

Y ou can skip the connection dialog window securely by putting the connection information into an RC file and then
using the- - ur | i d switch to DatabaseManager or DatabaseManagerSwing. This strategy is great for adding launch
menu items and/or launch icons to your desktop. Y ou can set up one icon for each of the database accounts which
you regularly use.

The default location for the RC fileis dbnanager . r ¢ in your home directory. The RC File Authentication Setup
section explains how to put the connection information into thistext file. If you also run SglTool , then you can share
the RC filewith SglTool by using asym-link (if your operating system supportssymlinks), or by usingthe- -rcfil e
switch for either SglTool or DatabaseM anagerSwing.

Warning

Use your operating system facilities to prevent others from reading your RC file, since it contains pass-
words.

To set up launch items/icons, first experiment on your command line to find exactly what command works. For ex-

ample,

‘j ava -cp /path/to/hsqgldb.jar org. hsql db. util.DatabaseManagerSwing --urlid nem

Then, use your window manager to add an item that runs this command.

Using the current DatabaseManagers with an older
HSQLDB distribution.

Thisprocedurewill allow usersof alegacy version of HSQLDB to useall of the new features of the DatabaseM anagers.
You will aso get the new version of the SglTool! This procedure works for distros going back to 1.7.3.3 at least,
probably much farther.

48

Hypers L Database Manager

These instructions assume that you are capable of running an Ant build. See the Building Appendix of the HyperSQL
User Guide [distro_baseurl DEFAULTVAL/guide/index.html].

1. Download and extract a current HSQL DB distribution. If you don't want to use the source code, documentation,
etc., you can use atemporary directory and remove it afterwards.

2. Cdtothebuild directory under the root directory where you extracted the distribution to.
3. Runant hsgl dbutil.
4. If you're going to wipe out the build directory, copy hsql dbuti | . j ar to asafelocation first.

5. For now on, whenver you are going to run DatabaseM anager*, make sure that you havethishsql dbuti | . j ar
asthefirst item in your CLASSPATH.

Here's a UNIX example where somebody wants to use the new DatabaseM anagerSwing with their older HSQLDB
database, as well as with Postgresql and alocal application.

CLASSPATH=/ pat h/ t o/ hsqgl dbuti | .jar:/hone/ bob/ nyapp/cl asses:/usr/local/lib/pg.jdbc3.jar
export CLASSPATH
java org. hsql db. util.DatabaseManagerSwing --urlid urlid

DatabaseManagerSwing as an Applet

DatabaseM anagerSwing isalso an applet. You can useitin HTML, JSPs, etc. Be aware that in Applet mode, actionsto
load or save local fileswill be disabled, and attempts to access any server other than the HTML-serving-host will fail.

Since the Applet can not store or load locally saved preferences, the only way to have persistent preference settings

isby using Applet parameters.

DatabaseM anager Swing Applet Parameters

jdbcUrl URL of adata source to auto-connect to. String value.

jdbcDriver URL of a data source to auto-connect to. String value. Defaults to
org. hsql db. dri ver. JDBCDri ver.

jdbcUser User name for data source to auto-connect to. String value.

jdbcPassword Password for data source to auto-connect to. String value. Defaults to zero-length string.

schemalilter Display only object from this schemain the object navigator. String value.

|af Look-and-feel. String value.

loadSampleData Auto-load sample data. Boolean value. Defaults to false.

autoRefresh Auto-refresh the object navigator when DDL modifications detected in user SQL commands.
Boolean value. Defaultsto true.

showRowCounts Show number of rows in each table in the object navigator. Boolean value. Defaults to false.

showSysTables Show system tablesin the object navigator. Boolean value. Defaults to false.

showSchemas Show abject names like schema.name in object navigator. Boolean value. Defaults to true.

resultGrid Show query resultsin Gui grid (as opposed to in plain text). Boolean value. Defaults to true.

49

distro_baseurl_DEFAULTVAL/guide/index.html
distro_baseurl_DEFAULTVAL/guide/index.html
distro_baseurl_DEFAULTVAL/guide/index.html

HyperS@L Database Manager

showTool Tips Show help hover-text. Boolean value. Defaults to true.

50

HyperS@L

Chapter 4. Transfer Tool
Fred Toussi, The HSQL Development Group

Brief Introduction

Transfer Tool isa GUI program for transferring SQL schema and data from one JDBC source to another. Source and
destination can be different database engines or different databases on the same server.

Transfer Tool works in two different modes. Direct transfer maintains a connection to both source and destination
and performs the transfer. Dump and Restore mode is invoked once to transfer the data from the source to atext file
(Dump), then again to transfer the data from the text file to the destination (Restore). With Dump and Restore, it is
possible to make any changes to database object definitions and data prior to restoring it to the target.

Dump and Restore modes can be set viathe command line with -d (--dump) or -r (--restore) options. Alternatively the
Transfer Tool can be started with any of the three modes from the Database Manager's Tools menu.

The connection dialogue allows you to save the settings for the connection you are about to make. You can then
access the connection in future sessions. These settings are shared with those from the Database Manager tool. Seethe
appendix on Database Manager for details of the connection dial ogue box.

Fromversion 1.8.0 Transfer Tool isno longer part of thehsql db. j ar . Youcanbuildthehsql dbuti | . j ar using
the Ant command of the same name, to build ajar that includes Transfer Tool and the Database Manager.

When collecting meta-data, Transfer Tool performs SELECT * FROM <table> queries on al the tablesin the source
database. This may take along time with some database engines. When the source database is HSQL DB, this means
memory should be available for the result sets returned from the queries. Therefore, the memory allocation of the java
process in which Transfer Tool is executed may have to be high.

The current version of Transfer isfar fromideal, asit has not been actively developed for several years. The program
also lacks the ability to create UNIQUE constraints and creates UNIQUE indexes instead. However, some bugs have
been fixed in the latest version and the program can be used with most of the supported databases. The best way to
use the program is the DUMP and RESTORE maodes, which allow you to manually change the SQL statements in
the dump file before restoring to a database. A useful ideais to dump and restore the database definition separately
from the database data.

51

HyperS@L

Appendix A. HyperSQL File Links

HyperSQL Files referred to in this Guide

HyperSQL files referred to in the text may be retrieved from the canonical HyperSQL documentation site, http:/
hsgldb.org/doc/2.0, or from the same location you are reading this page from.

Note

If you are reading this document with astandal one PDF reader, only the http://hsgldb.org/doc/2.0/... links
will function.

Pairs of local + http://hsgldb.org/doc/2.0 links for referenced files.

Local: ../verbatim/sample/sgltool.rc
http://hsgldb.org/doc/2.0/verbatim/sample/sgltool.rc

Locdl: ../verbatim/sample/sampledata.sql
http://hsqldb.org/doc/2.0/verbatim/sampl e/sampl edata.sql

Locadl: ../verbatim/sample/sample.sql
http://hsgldb.org/doc/2.0/verbatim/sample/sample.sql

Local: ../verbatim/sample/pl.sql
http://hsgldb.org/doc/2.0/verbatim/sample/pl.sql

Local: ../verbatim/sample/plsgl.sl
http://hsgldb.org/doc/2.0/verbatim/sample/plsgl.sal

Locdl: ../verbatim/sample/dsv-sample.sql
http://hsgldb.org/doc/2.0/verbatim/sampl e/dsv-sample.sql

Local: ../verbatim/testrun/sgltool/sgljrt.sql
http://hsqldb.org/doc/2.0/verbatim/testrun/sgltool/sqljrt.sql
Local: ../verbatim/testrun/sgltool/sgl psm.sql
http://hsgldb.org/doc/2.0/verbatim/testrun/sgltool /sgl psm.sql
Locadl: ../verbatim/src/org/hsgldb/sample/SalFileEmbedder.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgl db/sampl e/ Sgl FileEmbedder.java
Local: ../apidocs/org/hsgldb/cmdline/SqlFile.html

http://hsqldb.org/doc/2.0/apidocs/org/hsgl db/jemdline/ Sgl File.html

52

../verbatim/sample/sqltool.rc
http://hsqldb.org/doc/2.0/verbatim/sample/sqltool.rc
../verbatim/sample/sampledata.sql
http://hsqldb.org/doc/2.0/verbatim/sample/sampledata.sql
../verbatim/sample/sample.sql
http://hsqldb.org/doc/2.0/verbatim/sample/sample.sql
../verbatim/sample/pl.sql
http://hsqldb.org/doc/2.0/verbatim/sample/pl.sql
../verbatim/sample/plsql.sql
http://hsqldb.org/doc/2.0/verbatim/sample/plsql.sql
../verbatim/sample/dsv-sample.sql
http://hsqldb.org/doc/2.0/verbatim/sample/dsv-sample.sql
../verbatim/testrun/sqltool/sqljrt.sql
http://hsqldb.org/doc/2.0/verbatim/testrun/sqltool/sqljrt.sql
../verbatim/testrun/sqltool/sqlpsm.sql
http://hsqldb.org/doc/2.0/verbatim/testrun/sqltool/sqlpsm.sql
../verbatim/src/org/hsqldb/sample/SqlFileEmbedder.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/sample/SqlFileEmbedder.java
../apidocs/org/hsqldb/cmdline/SqlFile.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jcmdline/SqlFile.html

	HyperSQL Utilities Guide
	Table of Contents
	Preface
	Available formats for this document

	Chapter 1. SqlTool
	Purpose, Coverage, Changes in Behavior
	Platforms and SqlTool versions covered
	Recent Functional Changes
	New Features

	The Bare Minimum
	Embedding
	Non-displayable Types
	Desktop shortcuts
	Loading sample data

	Satisfying SqlTool's CLASSPATH Requirements
	Accessing older HSQLDB Databases with SqlTool
	App-specific Classes, Embedding, and non-HyperSQL Databases
	Distributing SqlTool with your Apps
	SqlTool Client PCs

	RC File Authentication Setup
	Switching Data Sources
	Using Inline RC Authentication
	Logging
	Interactive Usage
	SqlTool Command-Line Editing
	Command Types

	Command Types
	Special Commands
	Edit Buffer / History Commands
	PL Commands
	? Variable
	Storing and retrieving binary files
	Command History
	Shell scripting and command-line piping
	Emulating Non-Interactive mode

	Non-Interactive
	Giving SQL on the Command Line
	SQL Files
	Piping and shell scripting
	Optimally Compatible SQL Files
	Comments
	Special Commands and Edit Buffer Commands in SQL Files
	Automation
	Getting Interactive Functionality with SQL Files
	Character Encoding

	Generating Text or HTML Reports
	SqlTool Procedural Language
	Variables
	Macros
	PL Sample
	Logical Expressions
	Flow Control
	Example

	Chunking
	Why?
	How?

	Raw Mode
	SQL/PSM, SQL/JRT, and PL/SQL
	Delimiter-Separated-Value Imports and Exports
	Simple DSV exports and imports using default settings
	Specifying queries and options

	Unit Testing SqlTool

	Chapter 2. Hsqldb Test Utility
	Chapter 3. Database Manager
	Brief Introduction
	Auto tree-update
	Automatic Connection
	RC File
	Using the current DatabaseManagers with an older HSQLDB distribution.
	DatabaseManagerSwing as an Applet

	Chapter 4. Transfer Tool
	Brief Introduction

	Appendix A. HyperSQL File Links

