HyperSQL User Guide
HyperSQL Database Engine, aka HSQLDB

Edited by The HSQL Development Group, Blaine Simpson, and Fred Toussi

HyperS@L

HyperSQL User Guide: HyperSQL Database Engine, aka HSQLDB
by The HSQL Development Group, Blaine Simpson, and Fred Toussi

$Revision: 3601 $
Published $Date: 2010-05-31 20:17:47 -0400 (Mon, 31 May 2010) $

Copyright 2002-2010 The HSQL Development Group. Permission is granted to distribute this document without any alteration under the terms
of the HSQL DB license.

HyperS@L

HyperS@L

Table of Contents

(= = o PP PPPTTPPPPTTRPPPPIN Xii
Available formats for this dOCUMENTiiiiiiiie e e e e Xii
1. RUNNING @Nd USING HYPErSOL ..ttt ettt ettt ettt e et e et e e et et e e e e et e e e eaba e eeeees 1
THhE HSQLDB Jar ...ttt ettt e et e ettt e ettt e e et et e e e e e e e e e naa s 1
RUNNIiNG Datalase ACCESS TOOISciiitieeiiii ettt e e e et e e e 1
A HYPErSOQL D@BDASEiiiitiieiiii ettt ettt 2
IN-Process Access 10 Datalase CalalOgSeveeruneiiiiiieeieii et e et e et e et et e e e et eeeere e eeees 2
LiStener / SEIVEr IMOUES ... ittt ettt ettt e ettt e e et et et e et e e e nb e eee 3
HYPErSOL HSQL SBIVEN oottt et r e e 4
HYPErSOL HT TP SoIVE oottt eeas 4
HYPErSQL HTTP SEIVIEL ..ot 4
Connecting t0 & Datalase SEIVENuuiiiii e e 4
SECUNLY CONSIAEIBIIONS ...evvueiiiiti ettt ettt ettt e e et e e et et e e e e et e e e esb e e eentaaeeees 5
USING MUILIPIE DELADASESvueiieiieeeeet ettt et e et e et e e 5
ACCESSING the DBeeiiii ettt et e e et e et et e e et e e et et e e e e e aees 5
CloSING the DaADESE ...ttt ettt ettt ettt et e et et e e e e a e aeee 6
Creating 8 NEW Datahaseccoouuuiiiiiiii ettt et 7
2. SOQL LBNJUBOE .eeneeiiiitieet ettt ettt ettt ettt et et eaes 8
SEANAAIAS SUPPOIT ..ttt ettt ettt e ettt e ettt e ettt s e e et et e e e e et e et e et e eenb e aees 8
SQL Data @nd TalESeeeiiiiiiiii e e aa s 8
TEMPOIAY TADIES .oeeiiiii ettt e et ettt e ettt r e et e b e e e e e aeee 9
PErSISIENt TalES .ot e e 9

(o] oI D - - PRSP PPPR 9
BasiC TYPES @0 OPEFALiONSccuuuiiiiiiieeiiit ettt et e et e et a e e e et e et et e e e b e e e era s 10
U o Y o= T T PSP PPPPTT 10

2 Tolo] L= I Y o= PP PPT TR PUPPT 12
CharaCter SIING TYPES ..iiiiiiiiiii ettt ettt e et e e et eeeaa s 12
BiNary SING TYPES ettt ettt e e et e et e e et e e 13

=TT 1o T Y o= TSP PPPPTTUUPPIN 14
Storage and Handling of JaVa ODJECEScvevuuneiiiiiiee ettt 14

Type Length, Precision and SCAIEiiiiiiiiiiiiii e 15
D= 1= (DTS Y 0= PP PO PPPPPT 15
F01C= Y= I Y 1SS SRR 18
L (= 7 TP PP PTPPPI 21
ATTAY DEFINITION ... ettt e et e b 22
ATTAY REFEIENCE .ottt ettt e e et e e e e 22
ATTEY OPEIBLIONS ... eeetti i eeeeit ettt ettt ettt ettt et et e et e et e et e b r et e et et e ra e e eraans 23
INdexes and QUENY SPEEAiiiiii ittt et 24
Query Processing and OPtiMIiSaLiONcoeeueuoiiiei ettt e et e et e et e e e e eneas 25
3. SeSSIONS AN TFANSACHIONSeeeieeieeii ettt ettt ettt e et e et e et et r e et et e e e e et e e e e et as 27
OVEIVIBIV ettt e et e e et e e e e et e e et et e e e et e e et e e e et et e b e e e s 27
Session Attributes and Variablescoiiiiiiiii e 27
SESSION ALIITDULES ...ttt e et e et e e et e eeen e eene 28
SESSION VATBDIES ... 28
SESSION TADIES ..t 28
Transactions and CoNCUITENCY CONIOLoiiiieiiieiii et e eeeeans 29
TWO Phase LOCKING ..oeeiiieiiiii ettt ettt et e et e e e et e e e e abe e eenes 29

Two Phase Locking with Snapshot ISOIatioNoeeieiiiiiiiiiie e 29

LOCK CONLENtION iN 2PL ...ttt ettt e e et e e e e na e e eaeas 30
Y O O PP PPPPTT 30
Choosing the TransaCtion MOOE]oouiiiiiiii e 31

HyperS@L HyperSQL User Guide

Schema and Database ChanQeoovviiiiiiieiii e e e e e e e e e e et e e e eanaees 31
SIMUItaNEOUS ACCESS t0 TAIES ...ivuiiiiit it e e e e e eaaes 32
Session and Transaction Control SEAEEMENTSuiiviiiiiiie e e e e e 32
4, Schemas and Database ObJECLSuuiiiiiieiii i e e e e e e e e e e et e e st e e et e e et e e san e eatneaeanaes 38
(@Y= V1= Y PTRPTRN 38
Schemas and SChemMa ObJECES ... ccuuiiiii i e e e e e e et e et e e et e e aan e eeas 38
NAMES ANA REFEIENCES ...viiitiii i e e e e e e e e e e et e et e e e e e e e eaes 39
(0= o (= = PP 39

(001 =1 1P 40

[T 1T o A I 1= 40

(D10 017= 1 4 ST 40
NUMDEr SEOUENCES ...iitiiiii et ei e e e e e e e e e e e e e e et e e et e e et e e et e e et e e eta e etn e eatneeanneaetnaes 40

L IE= o= 42
AT 42
(00 g1 1 =] 1K RPN 42

F == 1o L PP 43
10 10 = £ 43

[010 141 PP 43
100 [(=PSRN 44
Statements for Schema Definition and Manipulationcooeiiieiiiiiiiiii e 44
Common Elements and SEatEMENTSiiviiiriiiiii e e e e e e e e e ens a4
R a1 Te [o= v £ 45
(0010010070 (1 aTe [o)1= ot £ 45
e a1c 1= WO (= 1[0 RSP 46
Table Creation and ManipUlaiionoeoiuieiiiiii e e e e e e e e eens 47
View Creation and Manipulationcieiiiiiiiieeiiiiee e e e e e e e e e e e eaa e eaen 55
Domain Creation and Manipulationcccouiiiiiiiiiie e e e e e e e e ees 56

QI Te (o L= Ot = o] o 57

LR o101 S O (== [o) [PPSR 59

S (U< Tl @ = 1o o PPN 61

SQL Procedure SEAatEMENLoeiuuiiiiiieiie e ee et e e e e e e e e e e et e e et e et e et e e e e aaaae 62
Other Schema OBJECt CrEationNiiiiiiiii i e e e e e ees 63

The INFOrMELION SCHEMA .. .vuiieiii e ettt e e e e et e et e et e e e e e e e eaeees 66
Predefined Character Sets, Collations and DOMAINSccuuvivniiiieiniiiieiieeee e eee e e eans 66
Views in INFORMATION SCHEMA ..oeriiii ettt e e e e aaas 66

T A 1= o =P 70
(@Y= V1= Y PPRPTN 70
The IMPIEMENTALION ... e e e e e e e e e e et e e et e e et e et e eaa e eetn e eanaaees 70
DEfINITION OF TADIES ..iiuiiiiiii i e e e e e e et e e e eaas 70
Scope and REASSIGNIMENTouuiiii e e e e e e e e e e et e e et e et e e e e eaenas 70

Null Values in Columns of TeXt TabIESccuiiiiiiiiiii e 71
(0001110 8= 1 (o o 1N 71
Disconnecting TexXt TaDlESc.uiiiiiiiiiic e e e e e e e e e e 72

L= TSI LS o =P 73
Text File Global PrOoPertiESuiiiiiiiii e e e e e e e e et e et e e e e eaens 73
I 01 o o) PSPPI 73
(SR AN e o= @0 1 (o PPN 75
(@Y= V1= Y PTRPTRN 75
Authorizations and ACCESS CONIIOliiviiieii e e et e et e eaaas 75
BUITE-TN ROIES @GN USEIS ..ouiiiiiiiiiiieiie ettt ettt e et e e e e et e e e e eeaes 76
ACCESS RIGNES .ot e 77
Statements for Authorization and ACCESS CONEIOlcvviiiiii e 78
7. Data ACCESS AN0 CNANGE ..oivuiiiii it ee e et e e e e e e e e e e et e et e e et e e et e e et e e e e e e et e eetn e eanaees 82
(@Y= V1= Y PPRPTRN 82

HyperS@L HyperSQL User Guide

CUrSOrS AN RESUIT SEES .ouuuiiiiiiiie et e e e e et e e e et e e e et e e e e at e e eeaennes 82
COlUMNS BN ROWS .eeiiiieeeiii ettt e e et et s e e et e e e e et e e e eataneeeannaeeennnns 82

[N F= Y7o = (o o 82

LW ToT0 = 2! o |1 S UPSTPP 83

= 1S Y71 PPN 84

[oo =1 11 1 Y PP 84

F 1o o) 1110 1T A PP 84
BT O @ = o = 1 PSP 84

N B = O = = 11 = T PP 85
JDBC REUMNED VAIUES ...ouiiiiiiiii ettt sttt e et e e e et s e e e e et n e e e eatnneeeeatnaeeaes 85
Y1z G = = 1= S 85
[PP 86
REFEIENCES, BLC. .ottt ettt et 89

RV 0T T o 1= o o TN 90

L =0 107 =S PP 96
Other Syntax ElEMENS ..uuiii e e e e e e e e et e e e e et e e aanaaes 101

Datal ACCESS SEAlEIMENTSuitiit ittt et et e e e e e e et e et e e e e e e e e r e e neenaeens 103
L=/ o 1= PSP P 104
(@01 YA o= o oo o 105

I o L= T (== o) o 105
LK o L= T 0= P 107

o111 o I 1= o] = PSP 107

= 1< 1o PSP 109

(0= ox (o) o P 109
(0001001 1=o I @0 11 4011 109

NN F= 00T o 109
(CTgoTN o 1 a0 [@) o 1= - 1o o 110

N0 0 1= = 4 Lo o [110

= @01 - 1o 0 TP 110
(@01 YA T q] (=S o] o [111

L@ 0 = 1 oo RPN 112

S o1 o P 112

Data Change SEAalEMENESuuiiiiiieii i e e e e e e e e e e e e e e e et e e et s e e e e eat e eatneeeanaeetnnaes 112
[Dc L (S = < 1 1< o | A PP 112
TIUNCAEE SEALEMENT ...ttt et e e e et e et e et e en e e e e e e e e e eneennes 113

F S S = < 111 o | TP 113
L0l b= LIS = 1 1= | 114

Y o S = = 0 11 | PP PRPTPRPRPRN 115

S @ I 1Y =0 I = 01U] == 117
SQL Language ROULINES (PSM)uuiiiiiiiii et e e e e e e e e e e et e e et e et e e aaeeaens 118
ROULING SEBEEIMENES ... iiiiiiiieieee et e ettt e et et e e e et e et et e e e et e e e et e e e eran e 118

(O0 410 To 10 [aT0 IS 10101 o | P 119
VAITBDIES .o e e e aae 119

[= 0| = PPN 120
ASSIGNMENT SEAEEMENT .ouu i e e e e e e e e e e e et e e e e et e e et e e eaneaeees 121
Select Statement : SINGIE ROW ... e e e e e eaes 121
[0 = = 00T £ PR 122
e 1 0 IS = =101 1 £ PSP 122
ConditioNal SEALEMENES ...iiiie e e e aaaan 123
S (U IS = = 1 1< o | PP 124
(000011 {0 IS = 1 011 0| PSP 124
ROULINE POlYMOIPRISIM .oeiiii e e e e e e e et e e e e e e e enes 125
Returning Data From ROULINESiiiiiiiiiieiii e e e e e e e e e e e e et e e e e e e e eanaees 125

Java Language ROULINES (SQL/JIRT) cuuuiiiiiiiiii it e e e e e e e e e et e et e e s e e e e eaanas 126

Vi

HyperS@L HyperSQL User Guide

POlYMOTPRISIN e 127

Java Language ProCEAUIESiiiiuieiiii e i e e e e e e e e e e e e e e e e et e e et e e et eeaaeeaanaes 128
[0 T= o YA o o o o PP PP 128

SQL Language Aggregate FUNCLIONSc.uiiiiiiiiiie e e e e e e e e e e e e aa s 128
Definition of AQQregate FUNCHIONSccuuiiiiiiiii e e e e e e e e e e e e eeen 129

SQL PSM AQQregate FUNCLIONSuuiiiiiieiiiieiiii e e e e e e e e e e e et e e e e e st e e et e e et e e etneeeanaee 129

Java AQOregate FUNCLIONScouuiiii e e e e e e e e et e e et e e ea e eees 130
ROULINE DEFINITIONiiiiit et e e e e e e e e et e e e e et e e e e et e e eeaen s 131
ROULINE CRar@CLENISHICS ..vuuieiiiiiieeeiii e et e ettt e e ettt e e e ettt e e e eetreeeeatneeeeatnaaaaes 133

LS N 4 oo 1= PN 136
L@ N = SR 136
QI 0 o L= (o] 0= = 137
B0 10 L= Y= | 137

LT =011 = /P 137

I oo L= e v o T 02T PP 137
REFEIENCES 10 ROWS ..ottt e e et e e e e e e eees 137

B oo L= @0 o [o) o P 138
TrIQOEr ACHON 1N SOL ..ttt e e e e e e e e e e e et e et e e e e et eaaa s 138
TRIQOEr ACHON 1N JAVA ..uiiiiiiii it e e e e e e e et e e e e e e e e e aanes 138

QI oo L= Ot =" o) o P 139
10. BUIE TN FUNCLIONS ...ttt e et e e et r e e ettt e e e et s e e e et e e e e eaan e e e aenenneeeennns 142
L@ N = PP 142
String and Binary String FUNCHIONSuuiiiiiiii e e e e e e e e e e e e e e e e e anas 143
N8 T 0 T o g 1 PP 147
Date Time and Interval FUNCHIONSocuueiiiiii e et eeeaanns 150
F N 4 = YA U o PP 155
GENErAl FUNCHIONS .oeiiiii ittt e et e et r e e et e e e et e e e e et e e e esan s 155
VS (= 1 U o 157
11. System Management and DeploymMENt ISSUESoiiiiiiiii i ee e e e e e e e e e 160
Mode of Operation and TabIESiiiiiiii e 160
VKoo [0 @ o= ' o 160
L= o =TSSP 160
=T LI @ o= ot £ P 161

(D= o107 001= 0 or0] 1=t S 161
RS 0 00 A A BT - o - = = 161

= aaTo TV oo B I T 2 L 162
Table MemMOrY AlIOCEIIONc.uuiiiiie e e e e e e e e e e e e et e eean s 162
Result Set Memory AHTOCAHONcoiuiiiii e e 162
Temporary Memory Use DUriNg OPErationSceevuuieiiueeiiieeiiiieeiieeeseeeie e s e s eeaneenens 162

Data Cache Memory AIOCAHONcouuiiiiiiiii e e e e e e e e e eanas 163
Object Pool Memory ANOCAIONcouuiiiiiiei e e e s 163

LOD MEMOIY USAgE ivtuiiiiiiii et e e et e e e e e e e e e r e e e et e e et e e et e e et e e et e e aaneeeanns 163

TS S o T 163
Managing Database CONNECLIONSiiiiiiiiiieii e e e e e e e e e e e e e e et e e et e e aaneeeees 164
Tweaking the Mode Of OPEralioNciiieiiiiiie e e e e e e e e e e et e e et e e sanees 164
Application Development and TESHINGc.uuviiiiiiiiiiii e e 164
Embedded Databases in Desktop APPlICAtiONSoovuiiiiiiiiie e 165
Embedded Databases in Server AppliCationSoovviiiiiiiieiii e e 165
Embedding a Database LiStENErcooviiiiiiiii e 165
Using HyperSQL WiIthOUt LOGGING ...ueiveeiiiieiieeti e et e e e e e e et e e e e et e e st e e e eeaneees 166
SEIVEN DABDASES ..vuiiiiitiie et a e et a e e aaae 166
UpPGrading Dat@haSESccuuiiiiiiiiii e e 166
Upgrading From Older VEISIONScouuiiiiieiiiiee e e e e e e e e e e e e et e e et eeanas 166
Manual Changes to the *.SCript FIlec..iiiiiiii e 167

Vii

HyperS@L HyperSQL User Guide

Backward Compatibility ISSUESciiiiiiiiiiii e e e e e e e e e e e e e et e e e e e aaeees 168
Backing Up Database CalalOgSc.vuieeuuiiiiiieiiieeii i e e e et e e e e e e e e e e e e e et e e et e e et e eaaeesanaees 168
MaKiNG ONliNE BaCKUDPSuuiiiiiiiiie e e e e e e e e e e e et e e et e e et e e e eanaas 169
MaKing OffliNE BACKUPSuuiiiiiiiii i e e e e e e e e e e e e e e et e e et e et e e aaeeaens 169
G gl o S = ot U = N 169
RESIONNG @ BaACKUD .vviiiiiiii e e 169
ENCrypted Dal@hasgSciuuiiiiiieiii i et e e e e e e e e aaa s 170
Creating and Accessing an Encrypted DatabhaSec..oveviiiiiiiiiiiiiiccie e 170
S0 1c =0 I O] 1S T L= (o) 1 170

S ol 10105 o (= = 1 o] o S 170
Monitoring Datahase OPEratioNSciviuuieiiiieiiii e e e e e e e e e e e e e e e e et e e et e e aenaeenes 171
Statement Level MONITOMNGuiiiiniiiiiieeii e e e e e e e e et e e et e e e e eaens 171
Internal EVENt MONITOIINGiiieeii e e e e e e e e e et e et e e et e e st e e e e e eenaes 171
Server Operation MONITOMINGiiuieii e e e e e e e e e e e et e et e e aaeeaenns 171

2 < 011 3 PP PTPPT 171
A o oo =P 179
L0091 1< o 1 0 PPN 179
(00 a10Tc w1 o T o 0] o 1= 11 =P 180
Database Properties in Connection URL and Properti€Scveivieiiiiiiiii e eae e 181
13. HyperSQL NEtWOIK LISEENEIS ...iovuiiiiiiiiiieiiie e e e e e e e e e e e e e e e e et e e et e e et e e st e e et e eaanaees 187
IS = 0= PSP 187
HY DB S SV ottt e 187
HYPErSQL HTTP SEIVEr .ottt e e ettt e ettt e e e et s e e e eabn e e eestnaeeeenes 187
HYPErSQL HTTP SEIVIEL ooeuniiiiii e e e e e e e eaanns 187
Server and WeD SErVer PrOPErtiESccuuiiiiiiiiiii et e e e e e e e 188
Starting a Server from your apPliCatiONiiiiiiieiiie e e e 189
Allowing a Connection to Open a DatahaSeoiviiiiiiiiieiii e e 190
B IS 0 Y/ o PN 190
S (U= 1= 1 £ PP 190
Encrypting your JDBC CONMNECLIONiiitiiiiii e e e e e e e e e e e e e e e e e aaaas 191

J O et a s 192
MaKing a Private-Key KEYSIOr®cciuuiiiiiiiiii et e e e e e e e e e e aanas 193
Automatic Server or WebServer startup on UNIX ... 193
NEIWOTK ACCESS COMEIOI ... iiitiee ettt e e e e et e e e e et e e e e et e e e eett e eeaeteaeaeees 193
14, HyperSQL 0N UNIX ittt e e et e e e e et e e e e et e e e eett e e e eatt s eeeeebe e aeaaernnaeaenes 196
001 PP 196
TS = = o) o PP 196
Setting up Database Catalog and LIStENEroiiiniiiiiieiiie e e e e e e e e e e ees 198
ACCESSING YOUN DAADASEciiiiiiii et e e e e e e e e et e et e et e e e e e aans 199
Create additionNal ACCOUNESiiiiii i et e et e e et e e e et e e e et aeeeaaaaeeenanns 202
S a1 o (011 o P 203
Running Hsgldb as @ System DaEmMONueiiiiieiiii e e e e e e e e e e e et e e et e e eanees 203
Portability of hsgldb iNit SCHPLoiiiii e e 204

INit SCIIPt SEUP PrOCEAUIE ...eeiieiiii e e e e e e e e e eaas 204
Troubleshooting the TNt SCIIPL ...coveiii e 208
L0 =o 1 2o [P 208
y N I B =30 =YY o) (oL PP 210
List of SQL Standard KEYWOITSuiiiiiiiiiiieiiiie e e e e e e e e e e e e et e e et e e et e e st e et eeaneeaen 210
List of SQL Keywords Disallowed as HyperSQL [dentifiersccooveviiiiiii i, 211
B. BUIlAING HYPErSOL JArS ...uuiiiiiiiiiiieii et e e e e e e e et e e e e et e e et e et e e et e e et e e aa e eatnaeeanaeetnaes 213
001 PP 213
BUITAING WIth ANt e e e e e e e e e e e e e et e et e e et e e aan s 213
1@ o] =1 o T To 7Y o | S PPN 213
Building Hsgldb With ANt ... e 213

HyperS@L HyperSQL User Guide

BUIlding FOr OlAEr JDKS ...uiiiiiiiiieii et e e e e e e e e e e et e et e e et e e et 214

=TT o 1o TR0 T 1 214
HSOIAD COUESWITCNEr . ..eeiii e e e e e e e e e e e aaas 215
[2T0TH Lo Tl o (oTor0 1 4= o - 1 o o R 216

C. HyperSQL with OpenOFfiCEOIGuiiiiiiii i eiiie e e e e e e e e e et e e et e e et e e et e eaanaees 217
HyperSQL With OpenOffiCR.OIG ...cvvuiiiiii e e e e e e eaa s 217
Using OpenOffice.org as a Database TOOIccvuuiiiiiiiiii e e e e eeaaas 217
Converting .odb files to use With HyperSQL SEIVEroiiiiiiiiiiiiii e 217

(D o 1Y o 1= £SO I | = R P 218
S I 1 o = 220
€1 oTc = I g o PPN 224

HyperS@L

List of Tables

1. Available formats of this dOCUMENTiiiiiiiii e Xii
10.1. TO CHAR VAIUBS ..ottt e et e et e et et eeeeaa s 154
12.1. HyperSQL URL COMPONENEScctuiirieirteeeieeeie et e et e e et e e e e e et s e e e enneean e eeneennns 179
12.2. CONNECLION PrOPEITIES . .oeei ittt et e et e et e e et e e et et e e e b 180
12.3. Database-specific Property File PrOPEITIESiiiiiiiiieiii e e 181
13.1. common server and WEDSEIVES PrOPEITIESciieuiieeiiti et e ettt e et e et e e e 188
13,2, SEIVES PrOPEITIES ..oeiiieiiiti ettt ettt ettt ettt e ettt e e et et e ettt e et e et e e e 189
13.3. WEDSEIVEN PIOPEITIESeiiiii e eeeet ettt ettt ettt e et e et et e et e et e et e eb e et e eb e e e e nb e e enanas 189

HyperS@L

List of Examples

1.1. Java code to connect to the 10Cal NSOl SEIVErooui i e 4
1.2. Java code to connect to the 10Cal NP SEIVErooueiiiii e 5
1.3. Java code to connect to the local secure SSL hsgl and http SErVErSoeiiiiiiiieii e 5
1.4. specifying a connection property to shutdown the database when the last connection isclosed 6
1.5. specifying a connection property to disallow creating a new databaseccooveiiiiiiieiiiiiincc e, 7
3.1, User-defined Session VariahleSooiiiiieiii e 28
3.2. User-defined Temporary Session TahIESuiiiiiiiiiii et e 28
3.3. Setting TransaCtion CharaCteriStICSuuuueieiii ettt ettt ettt n e e e re e e enaens 33
34 LOCKING TADIES ...ttt e et et ettt ettt e et e e e e et e e e en e aae 34
35, ROIDACK ... e 34
3.6. Setting SESSION CharaCleiSlICSueiiitii ettt ettt e ettt e et e e e e ebe e e e eeneaeeees 35
3.7. Setting SESSION AULNOMIZALONcieiii ettt e et e e et e e e e ebe e eeees 35
3.8. SELtiNGg SESSION TIME ZONE ..uiieeiitie ettt ettt ettt e et e et e e e e et e e et et a e et et e e e e et naeeera s 36
4.1. inserting the next sequence value into @table rOWc.uuiiiiiiii i 40
4.2. numbering returned rows of a SELECT in sequential ordercoouiiiiiiiiiiiiiiiiiieei e 41
4.3. Column values which satisfy a 2-column UNIQUE CONSLraintcc.uvieiiiiiniiiiiiiiieeiiieeece e 43
11.1. MaNINVOKEr EXAMPIE ...eeiiei ettt e ettt e et et e e et e e e e e e e 165
11.2. Offline Backup EXAMPIEoee ittt et e e e enaaas 169
11.3. Listing a Backup With DDBACKUDceuuuiiiiiiieieii ettt et et et e e eeeeens 169
11.4. Restoring a Backup With DDBaCKUDcieiiiiiiii e 169
11.5. Finding foreign key rows with no parents after a bulk importcoooeiiiiiiiii e, 175
13.1. Exporting certificate from the SErVer's KEYSIOrei i 191
13.2. Adding a certificate to the Client KEYSIOrecoouuiiiiiii e 191
13.3. Specifying your own trust store to @ JDBC CHENtcoeuviiiiiiiiieciii e 192
13.4. Getting a pem-style private key into 8 JIKS KEYSIOIEuiiiiiiiiiiiii e 193
13.5. Validating and Testing @an ACL fill@ ... 195
14.1. example SOItO0I.FC STANZAcceetiieiiii ettt e e e e 204
B.1. Buiding the standard Hsgldb jar file With ANt ... e 214
B.2. Example source code before CodeSWItCher IS TUNcooiueiiiiiii e 215
B.3. CodeSwitcher command 1iNE INVOCEIIONiiiiutiieiiiiie e 215
B.4. Source code after COOESWItChEr PrOCESSINGciveriieeiiii ettt 215

Xi

HyperS@L

Preface

HSQLDB (HyperSQL DataBase) is a modern relational database manager that conforms closely to the SQL:2008
Standard and JDBC 4 specifications. It supports all core features and many of the optional features of SQL:2008.

Thefirst versions of HSQLDB were released in 2001. Version 2.0, first released in 2010, includes a complete rewrite
of most parts of the database engine.

This documentation covers HyperSQL version 2.0. This documentation is regularly improved and undated. The latest,
updated version can be found at http://hsgldb.org/doc/2.0/

If you notice any mistakes in this document, or if you have problems with the procedures themselves, please use the
HSQL DB support facilities which are listed at http://hsgldb.org/support

Available formats for this document

This document is available in severa formats.

Y ou may be reading this document right now at http://hsgldb.org/doc/2.0, or in adistribution somewhere else. | hereby
call the document distribution from which you are reading this, your current distro.

http://hsgldb.org/doc/2.0 hosts the latest production versions of all available formats. If you want a different format of
the same version of the document you are reading now, then you should try your current distro. If you want the latest
production version, you should try http://hsgldb.org/doc/2.0.

Sometimes, distributions other than http://hsgldb.org/doc/2.0 do not host all available formats. So, if you can't access
the format that you want in your current distro, you have no choice but to use the newest production version at http://
hsgldb.org/doc/2.0.

Table 1. Available for mats of this document

format your distro at http://hsgldb.org/doc/2.0

Chunked HTML index.html http://hsqldb.org/doc/2.0/guide/
All-in-oneHTML | guide.html http://hsgldb.org/doc/2.0/guide/guide.html
PDF guide.pdf http://hsgldb.org/doc/2.0/guide/guide.pdf

If you are reading this document now with a standalone PDF reader, the your distro links may not work.

Xii

index.html
http://hsqldb.org/doc/2.0/guide/
guide.html
http://hsqldb.org/doc/2.0/guide/guide.html
http://hsqldb.org/doc/2.0/guide/guide.pdf

HyperS@L

Chapter 1. Running and Using HyperSQL
Fred Toussi, The HSQL Development Group

$Revision: 3601 $

Copyright 2002-2010 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2010-05-31 20:17:47 -0400 (Mon, 31 May 2010) $

The HSQLDB Jar

The HSQLDB jar package is located in the /lib directory of the ZIP package and contains several components and
programs.

Components of the Hsgldb jar package

* HyperSQL RDBMS Engine (HSQLDB)

* HyperSQL JDBC Driver

» Database Manager (GUI database access tool, with Swing and AWT versions)
* Sl Tool (command line database access tool)

The HyperSQL RDBMS and JDBC Driver provide the core functionality. An additional jar contains Sgl Tool (com-
mand line database access tool). SglTool and the DatabaseM anagers are general-purpose database tools that can be
used with any database engine that has a JDBC driver.

Running Database Access Tools

The tools are used for interactive user access to databases, including creation of a database, inserting or modifying
data, or querying the database. All tools are run in the normal way for Java programs. In the following example the
Swing version of the Database Manager is executed. The hsql db. j ar islocated in the directory . . / | i b relative
to the current directory.

‘j ava -cp ../lib/hsqgldb.jar org.hsqgldb.util.DatabaseManager Sw ng

If hsgl db. j ar isinthe current directory, the command would change to:

‘j ava -cp hsqgldb.jar org. hsqgl db.util.DatabaseManager Swi ng

Main classes for the Hsgldb tools
* org. hsqgl db. util . Dat abaseManager
e org. hsqgl db. util. Dat abaseManager Swi ng

When atool is up and running, you can connect to a database (may be a new database) and use SQL commands to
access and modify the data.

Tools can use command line arguments. You can add the command line argument --help to get a list of available
arguments for these tools.

HyperS@L Running and Using HyperSQL

A HyperSQL Database

Each HyperSQL database is called a catalog. There are three types of catalog depending on how the datais stored.

Types of catalog data

» mem: stored entirely in RAM - without any persistence beyond the VM processs life
« file: storedin filesystem files

* res: stored in a Javaresource, such as a Jar and always read-only

All-in-memory, mem: catalogs can be used for test data or as sophisticated caches for an application. These databases
do not have any files.

A file: catalog consists of between 2 to 5 files, all named the same but with different extensions, located in the same
directory. For example, the database named "test" consists of the following files:

* test.properties
e test.script

e test.log

* test.data

» test. backup

» test. | obs

The propertiesfile contains afew settings about the database. The script file contains the definition of tables and other
database objects, plus the data for non-cached tables. The log file contains recent changes to the database. The data
file contains the data for cached tables and the backup file is a compressed backup of the last known consistent state
of the data file. All these files are essential and should never be deleted. For some catalogs, the t est . dat a and
t est . backup fileswill not be present. In addition to those files, a HyperSQL database may link to any formatted
text files, such as CSV lists, anywhere on the disk.

While the "test" catalog is open, at est . | og fileis used to write the changes made to data. Thisfileis removed at
anormal SHUTDOWN. Otherwise (with abnormal shutdown) thisfileis used at the next startup to redo the changes.
Atest. | ck fileisaso usedtorecord the fact that the databaseis open. Thisis deleted at anormal SHUTDOWN.

Note

When the engine closes the database at a shutdown, it creates temporary files with the extension . new
which it then renames to those listed above. In some circumstances, at est . dat a. ol d is created and
deleted afterwards. These files should not be deleted by the user. At the time of the next startup, all such
fileswill be deleted by the database engine.

A res: catalog consists of the files for a small, read-only database that can be stored inside a Java resource such as a
ZIP or JAR archive and distributed as part of a Java application program.

In-Process Access to Database Catalogs

In general, JDBC is used for all access to databases. This is done by making a connection to the database, then using
various methods of thej ava. sql . Connect i on object that is returned to access the data. Accessto an in-process
database is started from JDBC, with the database path specified in the connection URL. For example, if the file:

HyperS@L Running and Using HyperSQL

database nameis "testdb" and itsfiles are located in the same directory as where the command to run your application
was issued, the following code is used for the connection:;

‘ Connection ¢ = DriverManager. get Connection("jdbc: hsql db: file:testdb", "SA", "");

The database file path format can be specified using forward slashes in Windows hosts as well as Linux hosts. So
relative paths or paths that refer to the same directory on the same drive can be identical. For exampleif your database
path in Linux is/ opt / db/ t est db and you create an identical directory structure on the C: drive of a Windows
host, you can use the same URL in both Windows and Linux:

‘ Connection c = DriverManager. get Connecti on("jdbc: hsql db:file:/opt/db/testdb", "SA", "");

When using relative paths, these paths will be taken relative to the directory in which the shell command to start the
Java Virtual Machine was executed. Refer to the Javadoc for JDBCConnect i on for more details.

Paths and database names for file databases are treated as case-sensitive when the database is created or the first
connection is made to the database. But if a second connection is made to an open database, using a path and name
that differs only in case, then the connection is made to the existing open database. This measure is necessary because
in Windows the two paths are equivalent.

A mem: database is specified by the mem: protocol. For mem: databases, the path is simply a name. Severa mem:
databases can exist at the same time and distinguished by their names. In the example below, the database is called
"mymemdb";

‘ Connection c¢ = DriverManager. get Connecti on("jdbc: hsqgl db: nem nynenmdb”, "SA", "");

A res: database, is specified by theres: protocol. Asit isaJavaresource, the database path isaJavaURL (similar tothe
path to a class). In the example below, "resdb” isthe root name of the database files, which existsin the directory "org/
my/path" within the classpath (probably in aJar). A Javaresourceisstored in acompressed format and is decompressed
in memory when it is used. For this reason, ares. database should not contain large amounts of data and is always
read-only.

‘ Connection c¢ = DriverManager. get Connecti on("jdbc: hsqgl db: res: org. ny. pat h. resdb", "SA", "");

Thefirst timein-process connection is made to adatabase, some general data structures areinitialised and afew hel per
threads are started. After this, creation of connections and callsto JDBC methods of the connections execute asif they
are part of the Java application that is making the calls. When the SQL command "SHUTDOWN" is executed, the
global structures and helper threads for the database are destroyed.

Note that only one Java process at a time can make in-process connections to a given file: database. However, if the
file: database has been made read-only, or if connections are made to ares. database, then it is possible to make in-
process connections from multiple Java processes.

Listener / Server Modes

For most applications, in-process access is faster, as the data is not converted and sent over the network. The main
drawback is that it is not possible by default to connect to the database from outside your application. As a result
you cannot check the contents of the database with external tools such as Database Manager while your application
is running.

Server modes provide the maximum accessibility. The database engine runs in a VM and opens one or more in-
process catalogs. It listens for connections from programs on the same computer or other computers on the network.
It tranglates these connections into in-process connections to the databases.

Several different programs can connect to the server and retrieve or updateinformation. Applications programs (clients)
connect to the server using the HyperSQL JDBC driver. In most server modes, the server can servean unlimited number
of databases that are specified at the time of running the server, or optionally, as a connection request is received.

HyperS@L Running and Using HyperSQL

A Sever mode is aso the prefered mode of running the database during development. It allows you to query the
database from a separate database access utility while your application is running.

There are three server modes, based on the protocol used for communications between the client and server. They are
briefly discussed below. More details on serversis provided in the HyperSQL Network Listeners chapter.

HyperSQL HSQL Server

Thisis the preferred way of running a database server and the fastest one. A proprietary communications protocol is
used for this mode. A command similar to those used for running tools and described above is used for running the
server. Thefollowing example of the command for starting the server startsthe server with one (default) database with
files named "mydb.*" and the public name of "xdb". The public name hides the file names from users.

‘ java -cp ../lib/hsqgldb.jar org.hsql db. server. Server --database.0 file:nydb --dbnane.0 xdb ‘

The command line argument - - hel p can be used to get alist of available arguments.

HyperSQL HTTP Server

This method of access is used when the computer hosting the database server is restricted to the HTTP protocol. The
only reason for using this method of accessis restrictions imposed by firewalls on the client or server machines and it
should not be used wherethere are no such restrictions. The HyperSQL HTTP Server isaspecial web server that allows
JDBC clients to connect viaHTTP. The server can also act as a small general-purpose web server for static pages.

Torunan HTTP server, replace the main class for the server in the example command line above with the following:

‘ org. hsqgl db. server. WebSer ver ‘

The command line argument - - hel p can be used to get alist of available arguments.

HyperSQL HTTP Servlet

This method of access also uses the HTTP protocal. It is used when a separate servlet engine (or application server)
such as Tomcat or Resin provides access to the database. The Servlet Mode cannot be started independently from the
servlet engine. The Ser vl et class, in the HSQLDB jar, should be installed on the application server to provide the
connection. The database is specified using an application server property. Refer to the source file src/ or g/
hsql db/ server/ Servl et.java toseethedetals.

Both HTTP Server and Servlet modes can only be accessed using the JDBC driver at the client end. They do not
provide aweb front end to the database. The Servlet mode can serve only a single database.

Please note that you do not normally use this mode if you are using the database engine in an application server. In
this situation, connections to a catalog are usually made in-process, or using a separate Server

Connecting to a Database Server

When a HyperSQL server is running, client programs can connect to it using the HSQLDB JDBC Driver contained
inhsqgl db. j ar. Full information on how to connect to a server is provided in the Java Documentation for ~ JD-
BCConnecti on (locatedinthe/ doc/ api docs directory of HSQLDB distribution). A common exampleis con-
nection to the default port (9001) used for the hsgl: protocol on the same machine:

Example 1.1. Java code to connect to thelocal hsgl Server

try {
Cl ass. forNane("org. hsqgl db. j dbc. JDBCDri ver");

HyperS@L Running and Using HyperSQL

} catch (Exception e) {
Systemerr.println("ERROR failed to | oad HSQLDB JDBC driver.");
e.printStackTrace();
return;

}

Connection c¢ = DriverManager. get Connecti on("jdbc: hsqgl db: hsql : / /1 ocal host/ xdb", "SA", "");

If the HyperSQL HTTP server is used, the protocol is http: and the URL will be different:

Example 1.2. Java code to connect to thelocal http Server

‘ Connection c¢ = DriverManager. get Connecti on("jdbc: hsql db: http://I ocal host/xdb", "SA", ""); ‘

Note in the above connection URL, there is no mention of the database file, as this was specified when running the
server. Instead, the public name defined for dbname.O is used. Also, see the HyperSQL Network Listeners chapter
for the connection URL when there is more than one database per server instance.

Security Considerations

When aHyperSQL server isrun, network access should be adequately protected. Source | P addresses may berestricted
by use of our Access Control List feature, network filtering software, firewall software, or standal one firewalls. Only
secure passwords should be used-- most importantly, the password for the default system user should be changed
from the default empty string. If you are purposefully providing datato the public, then the wide-open public network
connection should be used exclusively to access the public data via read-only accounts. (i.e., neither secure data nor
privileged accounts should use this connection). These considerations also apply to HyperSQL servers run with the
HTTP protocol.

HyperSQL provides two optional security mechanisms. The encrypted SSL protocol , and Access Control Lists .
Both mechanisms can be specified when running the Server or WebServer. From the client, the URL's co connect to
an SSL server isdlightly different:

Example 1.3. Java code to connect to thelocal secure SSL hsgl and http Servers

Connection c
Connection c

Dri ver Manager . get Connect i on("j dbc: hsql db: hsql s: / /| ocal host/ xdb", "SA", "");
Dri ver Manager . get Connecti on("j dbc: hsql db: htt ps://I ocal host/xdb", "SA", "");

The security features are discussed in detail in the listeners chapter.

Using Multiple Databases

A server can provide connections to more than one database. In the examples above, more than one set of database
names can be specified on the command line. It is also possible to specify all the databasesina. properti es filg,
instead of the command line. These capabilities are covered in the HyperSQL Network Listeners chapter

Accessing the Data

Asshown so far, aj ava. sql . Connect i on object is always used to access the database. But the speed and per-
formance depends on the type of connection.

Establishing aconnection and closing it has some overheads, thereforeit isnot good practiceto create anew connection
to perform a small number of operations. A connection should be reused as much as possible and closed only when
it isnot going to be used again for along while.

Reuse is more important for server connections. A server connection uses a TCP port for communications. Each time
a connection is made, a port is allocated by the operating system and deallocated after the connection is closed. If

HyperS@L Running and Using HyperSQL

many connections are made from a single client, the operating system may not be able to keep up and may refuse
the connection attempt.

Ajava. sql . Connect i on object has some methods that return further j ava. sql . * objects. All these objects
belong to the connection that returned them and are closed when the connection is closed. These objects can be reused,
but if they are not needed after performing the operations, they should be closed.

Aj ava. sqgl . Dat abaseMet aDat a object is used to get metadata for the database.

A java.sql.Statenent object is used to execute queries and data change statements. A
j ava. sgl . St at enent can be reused to execute a different statement each time.

A java. sql . Prepar edSt at enent object is used to execute a single statement repeatedly. The SQL
statement usually contains parameters, which can be set to new values before each reuse. When a
j ava. sql . Prepar edSt at emrent object is created, the engine keeps the compiled SQL statement for
reuse, until the java. sql. PreparedStatenent object is closed. As a result, repeated use of a
j ava. sql . Prepar edSt at enent ismuch faster thanusing aj ava. sql . St at enent object.

A java.sql.Call abl eSt at enent object is used to execute an SQL CALL statement. The SQL
CALL statement may contain parameters, which should be set to new values before each reuse. Similar
to j ava. sql . Prepar edSt at ement , the engine keeps the compiled SQL statement for reuse, until the
j ava. sgl . Cal | abl eSt at emrent object is closed.

Aj ava. sgl . Connect i on object also has some methods for transaction control.
Theconmi t () method performsaCOVM T whilether ol | back() method performsaROLLBACK SQL statement.

The set Savepoi nt (String nane) method performs a SAVEPO NT <name> SQL statement and returns
aj ava. sql . Savepoi nt object. Therol | back(Savepoi nt nane) method performs a ROLLBACK TO
SAVEPO NT <name> SQL statement.

TheJavadocfor JDBCConnection , JDBCDriver , JDBCDatabaseMetadata JDBCResult Set
. JDBCSt at enent JDBCPr epar edSt at enent list all the supported JDBC methods together with
information that is specific to HSQLDB.

Closing the Database

All databases running in different modes can be closed with the SHUTDOWN command, issued as an SQL statement.

When SHUTDOWN is issued, all active transactions are rolled back. The catalog files are then saved in a form that
can be opened quickly the next time the catalog is opened.

A specia form of closing the database is via the SHUTDOWN COMPACT command. This command rewrites the
. dat afilethat containstheinformation stored in CACHED tablesand compactsit to its minimum size. Thiscommand
should be issued periodically, especially when lots of inserts, updates or deletes have been performed on the cached
tables. Changes to the structure of the database, such as dropping or modifying populated CACHED tables or indexes
also create large amounts of unused file space that can be reclaimed using this command.

Databases are not closed when the last connection to the database is explicitly closed viaJDBC. A connection property,
shut down=t r ue, can be specified on the first connection to the database (the connection that opens the database)
to force a shutdown when the last connection closes.

Example 1.4. specifying a connection property to shutdown the database when the last
connection isclosed

\ Connection c¢ = DriverManager. get Connecti on(\

HyperS@L Running and Using HyperSQL

‘ "j dbc: hsql db: fil e:/opt/db/testdb; shutdown=true", "SA", ""); ‘

Thisfeature is useful for running tests, where it may not be practical to shutdown the database after each test. But it
is not recommended for application programs.

Creating a New Database

When a server instance is started, or when a connection is made to an in-process database, a new, empty database is
created if no database exists at the given path.

With HyperSQL 2.0 the username and password that are specified for the connection are used for the new database.
Both the username and password are case-sensitive. (The exception isthe default SA user, whichisnot case-sensitive).
If no username or password is specified, the default SA user and an empty password are used.

This feature has a side effect that can confuse new users. If a mistake is made in specifying the path for connecting
to an existing database, a connection is nevertheless established to a new database. For troubleshooting purposes, you
can specify a connection property ifexists=t r ue to allow connection to an existing database only and avoid creating
anew database. In this casg, if the database does not exist, theget Connect i on() method will throw an exception.

Example 1.5. specifying a connection property to disallow creating a new database

Connection c¢ = DriverManager. get Connecti on(
"jdbc: hsql db: file:/opt/db/testdb;ifexists=true", "SA", "");

A database has many optional properties, described in the System Management and Deployment Issues chapter. Y ou
can specify most of these properties on the URL or in the connection properties for the first connection that creates
the database. See the Properties chapter.

HyperS@L

Chapter 2. SQL Language

Fred Toussi, The HSQL Development Group
$Revision: 3601 $

Copyright 2002-2010 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2010-05-31 20:17:47 -0400 (Mon, 31 May 2010) $

Standards Support

HyperSQL 2.0 supports the dialect of SQL defined by SQL standards 92, 1999, 2003 and 2008. This means where
a feature of the standard is supported, e.g. left outer join, the syntax is that specified by the standard text. Almost
all syntactic features of SQL-92 up to Advanced Level are supported, as well as SQL:2008 core and many optional
features of this standard. Work isin progress for aformal declaration of conformance.

At the time of this release, HyperSQL supports the widest range of SQL standard features among all open source
RDBMS.

Various chapters of this guide list the supported syntax. When writing or converting existing SQL DDL (Data Def-
inition Language), DML (Data Manipulation Language) or DQL (Data Query Language) statements for HSQLDB,
you should consult the supported syntax and modify the statements accordingly. Some statements written for older
versions may have to be modified.

Over 300 words are reserved by the standard and should not be used as table or column names. For example, the
word POSITION isreserved asit isafunction defined by the Standards with asimilar roleas St ri ng. i ndexOf ()
in Java. HyperSQL does not currently prevent you from using a reserved word if it does not support its use or can
distinguish it. For example CUBE is areserved words that is not currently supported by HyperSQL and is allowed as
atable or column name. Y ou should avoid using such names as future versions of HyperSQL are likely to support the
reserved words and may reject your table definitions or queries. The full list of SQL reserved wordsisin the appendix
Lists of Keywords .

If you have to use areserved keyword as the name of a database object, you can enclose it in double quotes.

HyperSQL also supports enhancements with keywords and expressions that are not part of the SQL standard. Expres-
sionssuch as SELECT TOP 5 FROM .., SELECT LIMT 0 10 FROM ... or DROP TABLE nytabl e
| F EXI STS are among such constructs.

Many print books cover SQL Standard syntax and can be consulted. For a well-written basic guide to SQL with ex-
amples, you can also consult PostgreSQL : Introduction and Concepts [http://www.postgresqgl.org/files’documenta
tion/books/aw_pgsal/index.html] by Bruce Momjian, which is available on the web. Most of the core SQL coverage
in the book applies also to HyperSQL. There are some differences in keywords supported by one and not the other
engine (OUTER, OID's, etc.) or used differently (IDENTITY/SERIAL, TRIGGER, SEQUENCE, etc.).

In HyperSQL version 2.0, all features of JDBC4 that apply to the capabilities of HSQLDB are fully supported. The
relevant JDBC classes are thoroughly documented with additional clarifications and HyperSQL specific comments.
See the JavaDoc for theor g. hsql db. j dbc. * classes.

SQL Data and Tables

Inan SQL system, all significant datais stored in tables and sequence generators. Therefore, thefirst step in creating a
databaseis defining thetablesand their columns. The SQL standard supportstemporary tables, which arefor temporary
data, and permanent base tables, which are for persistent data.

http://www.postgresql.org/files/documentation/books/aw_pgsql/index.html
http://www.postgresql.org/files/documentation/books/aw_pgsql/index.html
http://www.postgresql.org/files/documentation/books/aw_pgsql/index.html

HyperS@L SQL Language

Temporary Tables

TEMPORARY tablesare not saved and last only for the lifetime of the Connection object. The contents of each TEMP
tableis visible only from the Connection that was used to populate it. The definition of TEMP tables conforms to the
GLOBAL TEMPORARY typeinthe SQL standard. The definition of the table persists but each new connections sees
its own copy of the table, which is empty at the beginning. When the connection commits, the contents of the table
are cleared by default. If the table definition statementsincludes ON COMMIT PRESERV E ROWS, then the contents
are kept when a commit takes place.

Persistent Tables

HSQL DB supports the Standard definition of persistent base table, but defines three types according to the way the
datais stored. These are MEMORY tables, CACHED tables and TEXT tables.

Memory tables arethe default type whenthe CREATE TABLE command isused. Their dataisheld entirely in memory
but any change to their structure or contents iswrittentothe*. | og and *. scri pt files. The*. scri pt fileand
the *. | og file are read the next time the database is opened, and the MEMORY tables are recreated with al their
contents. So unlike TEMPORARY tables, MEMORY tables are persistent. When the database is opened, all the data
for the memory tables is read and inserted. This process may take a long time if the database is larger than tens of
megabytes. When the database is shutdown, all the datais saved. This can also take along time.

CACHED tables are created with the CREATE CACHED TABLE command. Only part of their data or indexes is
held in memory, alowing large tablesthat would otherwise take up to several hundred megabytes of memory. Another
advantage of cached tablesisthat the database engine takes less time to start up when a cached table is used for large
amounts of data. The disadvantage of cached tables is a reduction in speed. Do not use cached tables if your data
set isrelatively small. In an application with some small tables and some large ones, it is better to use the default,
MEMORY mode for the small tables.

TEXT tables use a CSV (Comma Separated Value) or other delimited text file as the source of their data. You can
specify an existing CSV file, such as a dump from another database or program, as the source of a TEXT table.
Alternatively, you can specify an empty file to befilled with data by the database engine. TEXT tables are efficient in
memory usage as they cache only part of the text data and all of the indexes. The Text table data source can always
be reassigned to adifferent file if necessary. The commands are needed to set up a TEXT table as detailed in the Text
Tables chapter.

With all-in-memory databases, both MEMORY table and CACHED table declarations are treated as declarations for
non-persistent memory tables. TEXT table declarations are not allowed in these databases.

The default type of table resulting from future CREATE TABLE statements can be specified with the SQL command:

‘ SET DATABASE DEFAULT TABLE TYPE { CACHED | MEMCORY }; ‘

The type of an existing table can be changed with the SQL command:

‘ SET TABLE <t abl e nanme> TYPE { CACHED | MEMORY }; ‘

SQL statements access different types of tables uniformly. No change to statementsis needed to access different types
of table.

Lob Data

Lobs are logically stored in columns of tables. Their physical storage is a separate *.Iobs file. In version 2.0 thisfile
is created as soon as aBLOB or CLOB isinserted into the database. The file will grow as new lobs are inserted into
the database. In version 2.0, the *.Iobsfile is never deleted even if al lobs are deleted from the database (In this case
you can delete the .lobs file after a SHTUDOWN).

HyperS@L SQL Language

Basic Types and Operations

HyperSQL supportsall the types defined by SQL-92, plus BOOLEAN, BINARY and LOB typesthat were added |ater
to the SQL Standard. It also supports the non-standard OTHER type to store serializable Java objects.

SQL isastrongly typed language. All data stored in specific columns of tables and other objects (such as sequence
generators) have specific types. Each dataitem conformsto the type limits such as precision and scale for the column. It
also conformsto any additional integrity constraintsthat are defined as CHECK constraintsin domainsor tables. Types
can be explicitly converted using the CAST expression, but in most expressions they are converted automatically.

Data is returned to the user (or the application program) as a result of executing SQL statements such as query ex-
pressions or function calls. All statements are compiled prior to execution and the return type of the data is known
after compilation and before execution. Therefore, once a statement is prepared, the data type of each column of the
returned result is known, including any precision or scale property. The type does not change when the same query
that returned one row, returns many rows as aresult of adding more data to the tables.

Some SQL functions used within SQL statements are polymorphic, but the exact type of the argument and the return
valueis determined at compile time.

When a statement is prepared, using a JDBC PreparedStatement object, it is compiled by the engine and the type of
the columns of its ResultSet and / or its parameters are accessible through the methods of PreparedStatement.

Numeric Types

TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without adecimal point) are the supported
integral types. They correspond respectively to byt e, short,i nt, | ong, Bi gDeci mal and Bi gDeci nal Java
types in the range of values that they can represent (NUMERIC and DECIMAL are equivaent). Thetype TINYINT
is an HSQLDB extension to the SQL Standard, while the others conform to the Standard definition. The SQL type
dictates the maximum and minimum values that can be held in a field of each type. For example the value range for
TINYINT is-1281to +127. Thebit precision of TINYINT, SMALLINT, INTEGER and BIGINT isrespectively 8, 16,
32 and 64. For NUMERIC and DECIMAL, decimal precision is used.

DECIMAL and NUMERIC with decimal fractions are mapped to j ava. mat h. Bi gDeci mal and can have very
large numbers of digits. In HyperSQL the two types are equival ent. Thesetypes, together with integral types, arecalled
exact numeric types.

In HyperSQL, REAL, FLOAT, DOUBLE are equivalent and all mapped to doubl e in Java. These types are defined
by the SQL Standard as approximate numeric types. The bit-precision of all these typesis 64 bits.

The decimal precision and scale of NUMERIC and DECIMAL types can be optionally defined. For example, DECI-
MAL(10,2) means maximum total number of digitsis 10 and there are always 2 digits after the decimal point, while
DECIMAL(10) means 10 digits without a decimal point. The bit-precision of FLOAT can also be defined, but in this
case, it isignored and the default bit-precision of 64 is used. The default precision of NUMERIC and DECIMAL
(when not defined) is 100.

Note: If adatabase hasbeen set to ignoretype precision limitswith the SET DATABASE SQL SIZE FAL SE command,
then atype definition of DECIMAL with no precision and scale istreated as DECIMAL (100,10). In normal operation,
it istreated as DECIMAL (100).

Integral Types

In expressions, TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without a decimal point)
are fully interchangeable, and no data narrowing takes place.

If the SELECT statement refers to a simple column or function, then the return type is the type corresponding to the
column or the return type of the function. For example:

10

HyperS@L SQL Language

CREATE TABLE t(a | NTEGER b Bl G NT);
SELECT MAX(a), MAX(b) FROMt:

will return aResul t Set where the type of the first columnisj ava. | ang. | nt eger and the second column is
j ava. | ang. Long. However,

| SELECT MAX(a) + 1, MAX(b) + 1 FROM t; |

will returnj ava. | ang. Long and Bi gDeci mal values, generated asaresult of uniform type promotion for al the
return values. Note that type promotion to Bi gDeci mal ensures the correct value is returned if MAX(b) evaluates
toLong. MAX_VALUE.

Thereisno built-in limit on the size of intermediate integral values in expressions. As aresult, you should check for
thetype of the Resul t Set column and choose an appropriate get XXXX() method to retrieveit. Alternatively, you
can use the get Qbj ect () method, then cast the result to j ava. | ang. Nunber and use the i nt Val ue() or
| ongVal ue() methods on the result.

When the result of an expressionis stored in acolumn of adatabasetable, it hasto fit in the target column, otherwise an
error isreturned. For example when 1234567890123456789012 / 12345687901234567890 isevaluated,
the result can be stored in any integral type column, even a TINYINT column, asit isasmall value.

In SQL Statements, an integer literal is treated as INTEGER, unless its value does not fit. In this caseit is treated as
BIGINT or DECIMAL, depending on the value.

Depending on the types of the operands, the result of the operations is returned in a JDBC Resul t Set in any of
related Java types. | nt eger, Long or Bi gDeci mal . The Resul t Set . get XXXX() methods can be used to
retrieve the values so long as the returned value can be represented by the resulting type. Thistypeisdeterministically
based on the query, not on the actual rows returned.

Other Numeric Types

In SQL statements, number literals with a decimal point are treated as DECIMAL unless they are written with an
exponent. Thus 0. 2 isconsidered a DECIMAL value but 0. 2EQ is considered a DOUBLE value.

When an approximate numeric type, REAL, FLOAT or DOUBLE (all synonymous) is part of an expression involving
different numeric types, the type of the result is DOUBLE. DECIMAL values can be converted to DOUBLE unless
they are beyond the Doubl e. M N_VALUE - Doubl e. MAX_VALUE range. For example, A * B, A/ B, A + B,
etc. will return aDOUBLE valueif either A or BisaDOUBLE.

Otherwise, when no DOUBLE value exists, if aDECIMAL or NUMERIC valueis part an expression, the type of the
result is DECIMAL or NUMERIC. Similar to integral values, when the result of an expression is assigned to a table
column, the value has to fit in the target column, otherwise an error is returned. This means a small, 4 digit value of
DECIMAL type can be assigned to a column of SMALLINT or INTEGER, but a value with 15 digits cannot.

When aDECIMAL valuesis multiplied by aDECIMAL or integral type, the resulting scale isthe sum of the scales of
thetwo terms. When they aredivided, theresult isavaluewith ascale (number of digitsto theright of the decimal point)
equal to the larger of the scales of the two terms. The precision for both operations is calculated (usually increased)
to allow all possible results.

The distinction between DOUBLE and DECIMAL isimportant when adivision takes place. For example, 10. 0/ 8. 0
(DECIMAL) equals 1. 2 but 10. OEO/ 8. OEO (DOUBLE) eguals 1. 25. Without division operations, DECIMAL
values represent exact arithmetic.

REAL, FLOAT and DOUBLE values are dl stored inthe database asj ava. | ang. Doubl e objects. Specia values
such as NaN and +-Infinity are also stored and supported. These values can be submitted to the database via JDBC
Pr epar edSt at enent methods and are returned in Resul t Set objects. The result can be retrieved from a Re-

11

HyperS@L SQL Language

sul t Set inthe required type so long asit can be represented. When Pr epar edSt at enent . set Doubl e() or
set Fl oat () isused, thevalueistreated asa DOUBLE automatically.

In short,
<nuneric type> ::= <exact nuneric type> | <approxinmate nuneric type>
<exact numeric type> ::= NUMERIC [<left paren> <precision>][<conma> <scal e>]

<right paren>] | { DECIMAL | DEC} [<left paren> <precision>[<comma> <scal e>]
<right paren>] | SMALLINT | INTEGER | INT | BIG NT

<approxi mate nuneric type> ::= FLOAT [<left paren> <precision> <right paren>]
| REAL | DOUBLE PRECI SI ON

<preci sion> ::= <unsigned integer>

<scal e> ::= <unsigned integer>

Boolean Type

The BOOLEAN type conforms to the SQL Standard and represents the values TRUE, FALSE and UNKNOMN. This
type of column can be initialised with Java boolean values, or with NULL for the UNKNOWN value.

The three-valuelogic is sometimes misunderstood. For example, X IN (1, 2, NULL) does not return trueif x isNULL.
In previousversions of HyperSQL, BIT wassimply an aliasfor BOOLEAN. Inversion 2.0, BIT isasingle-bit bit map.
<bool ean type> ::= BOOLEAN

The SQL Standard does not support type conversion to BOOLEAN apart from character stringsthat consists of boolean
literals. Because the BOOLEAN typeisrelatively new to the Standard, several database products used other typesto
represent boolean values. For improved compatibility, HyperSQL allows some type conversions to bool ean.

Vauesof BIT and BIT VARYING types with length 1 can be converted to BOOLEAN. If the bit is set, the result of
conversion isthe TRUE value, otherwiseit is FALSE.

Vauesof TINYINT, SMALLINT, INTEGER and BIGINT types can be converted to BOOLEAN. If thevalueis zero,
theresult isthe FALSE value, otherwiseit is TRUE.

Character String Types

The CHARACTER, CHARACTER VARYING and CLOB typesarethe SQL Standard character string types. CHAR,
VARCHAR and CHARACTER LARGE OBJECT are synonyms for these types. HyperSQL also supports LONG-
VARCHAR as a synonym for VARCHAR. If LONGVARCHAR is used without a length, then a length of 1M is
assigned.

HyperSQL's default character set is Unicode, therefore all possible character strings can be represented by these types.

The SQL Standard behaviour of the CHARACTER typeisaremnant of legacy systemsin which character strings are
padded with spaces to fill afixed width. These spaces are sometimes significant while in other cases they are silently
discarded. It would be best to avoid the CHARACTER type atogether. With the rest of the types, the strings are not
padded when assigned to columns or variables of the given type. The trailing spaces are still considered discardable
for al character types. Therefore if a string with trailing spaces is too long to assign to a column or variable of a
given length, the spaces beyond the type length are discarded and the assignment succeeds (provided all the characters
beyond the type length are spaces).

12

HyperS@L SQL Language

The VARCHAR and CLOB types have length limits, but the strings are not padded by the system. Note that if you
use a large length for a VARCHAR or CLOB type, no extra space is used in the database. The space used for each
stored item is proportional to its actual length.

If CHARACTER is used without specifying the length, the length defaults to 1. For the CLOB type, the length limit
can be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using
the<mul ti pli er>. If CLOB is used without specifying the length, the length defaultsto 1M.

<character string type> ::= { CHARACTER | CHAR } [<left paren> <character
l engt h> <right paren>] | { CHARACTER VARYI NG | CHAR VARYI NG | VARCHAR } <left
paren> <character |ength> <right paren> | LONGVARCHAR [<l eft paren> <character
| engt h> <right paren>] | <character |arge object type>

<character large object type> ::= { CHARACTER LARGE OBJECT | CHAR LARGE OBJECT
| CLOB} [<left paren> <character |arge object |ength> <right paren>]
<character length> ::= <unsigned integer> [<char length units>]

<l arge object length>::=<length>[<nultiplier>] | <large object | ength token>
<character |arge object length>::=<large object length>][<char length units>]
<l arge object length token> ::= <digit> .. <multiplier>

<multiplier> ::= K| M| G

<char length units> ::= CHARACTERS | OCTETS

CHAR(10)

CHARACTER(10)

VARCHAR(2)

CHAR VARYI NG 2)

CLOB(1000)

CLOB(30K)

CHARACTER LARGE OBJECT(1M

LONGVARCHAR

Binary String Types

TheBINARY, BINARY VARYING and BLOB typesarethe SQL Standard binary stringtypes. VARBINARY and BI-
NARY LARGE OBJECT are synonymsfor BINARY VARYING and BLOB types. HyperSQL also supports LONG-
VARBINARY as asynonym for VARBINARY.

Binary string types are used in a similar way to character string types. There are severa built-in functions that are
overloaded to support character, binary and bit strings.

The BINARY type represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed width.
Similar to the CHARACTER type, the trailing zerosin the BINARY string are simply discarded in some operations.
For the same reason, it is best to avoid this particular type.

If BINARY is used without specifying the length, the length defaults to 1. For the BLOB type, the length limit can
be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using the
<rul ti plier>.f BLOB isused without specifying the length, the length defaults to 1M.

<binary string type>::=BINARY [<l eft paren> <l ength> <right paren>] | { Bl NARY
VARYI NG | VARBI NARY } <l eft paren> <l ength> <right paren>| LONGVARBI NARY [<l eft
paren> <l ength> <right paren>] | <binary |large object string type>

13

HyperS@L SQL Language

<binary large object string type> ::= { BINARY LARGE OBJECT | BLOB } [<left
paren> <l arge object |ength> <right paren>]

<l engt h> ::= <unsigned integer>

Bl NARY(10)

VARBI NARY(2)

Bl NARY VARYI N& 2)

BLOB(1000)

BLOB(30K)

Bl NARY LARGE OBJECT(1M
LONGVARBI NARY

Bit String Types

The BIT and BIT VARYING types are the supported bit string types. These types were defined by SQL:1999 but
were later removed from the Standard. Bit types represent bit maps of given lengths. Each bitisO or 1. The BIT type
represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed with. If BIT is used without
specifying the length, the length defaults to 1. The BIT VARYING type has a maximum width and shorter strings
are not padded.

Beforetheintroduction of the BOOL EAN typeto the SQL Standard, asigle-bit string of thetype BIT(1) wascommonly
used. For compatibility with other products that do not conform to, or extend, the SQL Standard, HyperSQL allows
values of BIT and BIT VARYING types with length 1 to be converted to and from the BOOLEAN type. BOOLEAN
TRUE is considered equal to B'1', BOOLEAN FALSE is considered equal to B'0'.

For the same reason, numeric val ues can be assigned to columns and variables of the type BIT(1). For assignment, the
numeric value zero is converted to B'0', while all other values are converted to B'1'. For comparison, numeric values
lisconsidered equal to B'1' and numeric value zero is considered equal to B'0'.

It is not allowed to perform other arithmetic or boolean operationsinvolving BIT(1) and BIT VARYING(1). Thekid
of operations allowed on hit strings are analogous to those allowed on BINARY and CHARACTER strings. Several
built-in functions support all three types of string.

<bit string type> ::=BIT [<left paren> <length> <right paren>1] | BIT VARYI NG
<l eft paren> <l ength> <right paren>

BI T

BI T(10)

BI T VARYI N&(2)

Storage and Handling of Java Objects

Any serializable JAVA Object can be inserted directly into a column of type OTHER using any variation of
Pr epar edSt at enent . set Obj ect () methods.

For comparison purposes and in indexes, any two Java Objects are considered equal unless one of themisNULL. You
cannot search for a specific object or perform ajoin on a column of type OTHER.

Please note that HSQL DB is not an object-relationa database. Java Objects can simply be stored internally and no
operations should be performed on them other than assignment between columns of type OTHER or tests for NULL.
Tests such asWHERE obj ect 1 = obj ect 2 do not mean what you might expect, as any non-null object would
satisfy such atests. But WHERE obj ect1 1S NOT NULL is perfectly acceptable.

The engine does not allow normal column values to be assigned to Java Object columns (for example, assigning an
INTEGER or STRING to such a column with an SQL statement such as UPDATE nyt abl e SET obj ect col
= intcol WHERE ...).

14

HyperS@L SQL Language

<java object type> ::= OTHER

Type Length, Precision and Scale

In older version of HyperSQL, al table column type definitions with a column length, precision or scale qualifier
were accepted and ignored. HSQL DB 1.8 enforced correctness but included an option to enforce the length, precision
or scale.

In HyperSQL 2.0, length, precision and scale qualifiers are always enforced. For backward compatibility, when old-
er databases which had the property hsgldb.enforce_strict_size=false are converted to version 2.0, this property is
retained. However, thisis atemporary measure. Y ou should test your application to ensure the length, precision and
scale that is used for column definitions is appropriate for the application data. Y ou can test with the default database
setting, which enforces the sizes.

String types, including @l BIT, BINARY and CHAR string types plus CLOB and BLOB, are generally defined with
alength. If no length is specified for BIT, BINARY and CHAR, the default length is 1. For CLOB and BLOB an
implementation defined length of 1M is used.

TIME and TIMESTAMP types can be defined with a fractional second precision between 0 and 9. INTERVAL type
definition may have precision and, in some cases, fraction second precision. DECIMAL and NUMERIC types may be
defined with precision and scale. For al of these types a default precision or scale valueisused if oneis not specified.
The default scaleis 0. The default fractional precision for TIME is 0, whileitis 6 for TIMESTAMP.

Values can be converted from one type to another in two different ways: by using explicit CAST expression or by
implicit conversion used in assignment, comparison and aggregation.

String values cannot be assigned to VARCHAR columns if they are longer than the defined type length. For CHAR-
ACTER columns, along string can be assigned (with truncation) only if al the characters after the length are spaces.
Shorter strings are padded with the space character when inserted into a CHARACTER column. Similar rules are
applied to VARBINARY and BINARY columns. For BINARY columns, the padding and truncation rules are applied
with zero bytes, instead of spaces.

Explicit CAST of avalueto aCHARACTER or VARCHAR typewill result in forced truncation or padding. So atest
suchasCAST (mycol AS VARCHAR(2)) = 'xy' will findthevaluesbeginning with 'xy'. Thisisthe equivalent
of SUBSTRI NG(mycol FROM 1 FOR 2)= '«xy'.

For all numeric types, the rules of explicit cast and implicit conversion are the same. If cast or conversion causes any
digitsto be lost from the fractional part, it can take place. If the non-fractional part of the value cannot be represented
in the new type, cast or conversion cannot take place and will result in a data exception.

There are specia rulesfor DATE, TIME, TIMESTAMP and INTERVAL casts and conversions.

Datetime types

HSQL DB fully supports datetime and interval types and operations, including all relevant optional features, as speci-
fied by the SQL Standard since SQL-92. The two groups of types are complementary.

The DATE type represents a calendar date with YEAR, MONTH and DAY fields.

The TIME type representstime of day with HOUR, MINUTE and SECOND fields, plusan optional SECOND FRAC-
TION field.

The TIMESTAMP type represents the combination of DATE and TIME types.

TIME and TIMESTAMP types can include WITH TIME ZONE or WITHOUT TIME ZONE (the default) qualifiers.
They can have fractional second parts. For example, TIME(6) has six fractional digits for the second field.

15

HyperS@L SQL Language

If fractional second precision is not specified, it defaultsto 0 for TIME and to 6 for TIMESTAMP.

<datetine type> ::= DATE | TIME [<left paren> <tinme precision> <right paren>]
[<with or without tinme zone>] | TIMESTAMP [<l eft paren> <tinestanp precision>
<right paren>] [<with or without tinme zone>]

<with or without tine zone> ::= WTH TIME ZONE | W THOUT Tl ME ZONE
<time precision> ::= <time fractional seconds precision>
<timestanmp precision> ::= <time fractional seconds precision>
<time fractional seconds precision> ::= <unsigned integer>

DATE

TI ME(6)

TI MESTAMP(2) WTH TI ME ZONE

Examples of the string literals used to represent date time values, some with time zone, some without, are below:

DATE ' 2008- 08- 22"

TI MESTAWP ' 2008- 08- 08 20: 08: 08’

TI MESTAMP ' 2008- 08- 08 20: 08: 08+8: 00" /* Beijing */
TI ME ' 20: 08: 08. 034900’

TI ME ' 20: 08: 08. 034900-8: 00" /* US Pacific */

Time Zone

DATE values do not take time zones. For example United Nations designates 5 June as World Environment Day,
which was observed on DATE '2008-06-05' in different time zones.

TIME and TIMESTAMP values without time zone, usually have a context that indicates some local time zone. For
example, a database for college course timetables usually stores class dates and times without time zones. This works
because the location of the collegeisfixed and the time zone displacement isthe samefor all the values. Even when the
events take place in different time zones, for example international flight times, it is possible to store al the datetime
information as references to a single time zone, usually GMT. For some databases it may be useful to store the time
zone displacement together with each datetime value. SQL’'s TIME WITH TIME ZONE and TIMESTAMP WITH
TIME ZONE values include a time zone displacement value.

The time zone displacement is of the type INTERVAL HOUR TO MINUTE. This data type is described in the next
section. The legal values are between '-14:00' and '+14:00'.

Operations on Datetime Types

Theexpression<dat eti me expressi on> AT Tl ME ZONE <ti ne di spl acenent > evaluatesto adatetime
value representing exactly the same point of time in the specified <t i me di spl acenment >. The expression, AT
LOCAL isequivalentto AT TI ME ZONE <l ocal tine displacenent> If AT TI ME ZONE is used with
a datetime operand of type WITHOUT TIME ZONE, the operand is first converted to a value of type WITH TIME
ZONE at the session’ s time displacement, then the specified time zone displacement is set for the value. Therefore, in
these cases, the final value depends on the time zone of the session in which the statement was used.

AT TIME ZONE, modifies the field values of the datetime operand. Thisis done by the following procedure:
1. determine the corresponding datetime at UTC.
2. find the datetime value at the given time zone that corresponds with the UTC value from step 1.

Example a

16

HyperS@L SQL Language

‘TI ME ' 12:00: 00° AT TIME ZONE | NTERVAL ' 1: 00' HOUR TO M NUTE ‘

If the session’ stime zone displacement is-'8:00', thenin step 1, TIME '12:00:00' is converted to UTC, whichisTIME
'20:00:00+0:00'. In step 2, thisvaueis expressed as TIME '21:00:00+1:00'".

Example b:

‘TI ME ' 12: 00: 00-5: 00" AT TI ME ZONE | NTERVAL ' 1: 00 HOUR TO M NUTE ‘

Because the operand has a time zone, the result is independent of the session time zone displacement. Step 1 results
in TIME '17:00:00+0:00, and step 2 resultsin TIME '18:00:00+1:00'

Note that the operand is not limited to datetime literals used in these examples. Any valid expression that evaluates
to a datetime value can be the operand.

Type Conversion

CAST isused to for all other conversions. Examples:

CAST (<val ue> AS TI ME W THOUT TI ME ZONE)
CAST (<val ue> AS TIME W TH TI ME ZONE)

Inthefirst example, if <val ue> hasatimezone component, it issimply dropped. For example TIME '12:00:00-5:00'
is converted to TIME '12:00:00'

In the second example, if <val ue> hasno time zone component, the current time zone displacement of the sessionis
added. For example TIME '12:00:00' is converted to TIME '12:00:00-8:00" when the session time zone displacement
is'-8:00'.

Conversion between DATE and TIMESTAMP is performed by removing the TIME component of a TIMESTAMP
value or by setting the hour, minute and second fields to zero. TIMESTAMP '2008-08-08 20:08:08+8:00" becomes
DATE '2008-08-08', while DATE '2008-08-22' becomes TIMESTAMP '2008-08-22 00:00:00'.

Conversion between TIME and TIMESTAMP is performed by removing the DATE field values of a TIMESTAMP
value or by appending the fields of the TIME value to the fields of the current session date value.

Assignment

When avalueisassigned to adatetime target, e.g., avalueis used to update arow of atable, the type of the value must
be the same as the target, but the WITH TIME ZONE or WITHOUT TIME ZONE characteristics can be different. If
the types are not the same, an explicit CAST must be used to convert the value into the target type.

Comparison

When values WITH TIME ZONE are compared, they are converted to UTC values before comparison. If a value
WITH TIME ZONE iscompared to another WITHOUT TIME ZONE, thenthe WITH TIME ZONE vaueisconverted
to AT LOCAL, then converted to WITHOUT TIME ZONE before comparison.

It is not recommended to design applications that rely on comparisons and conversions between TIME values WITH
TIME ZONE. The conversions may involve normalisation of the time value, resulting in unexpected results. For
exampl e, theexpression: BETWEEN(TIME '12:00:00-8:00', TIME '22:00:00-8:00") isconverted to BETWEEN(TIME
'20:00:00+0:00', TIME '06:00:00+0:00") when it is evaluated in the UTC zone, which is aways FAL SE.

Functions

Severa functions return the current session timestamp in different datetime types:

CURRENT_DATE DATE

17

HyperS@L SQL Language

CURRENT_TIME TIMEWITH TIME ZONE
CURRENT_TIMESTAMP TIMESTAMPWITH TIME ZONE
LOCALTIME TIMESTAMP WITHOUT TIME ZONE
LOCALTIMESTAMP TIMESTAMPWITHOUT TIME ZONE

Session Time Zone Displacement

When an SQL sessionisstarted (with aJDBC connection) thelocal time zone of the client VM (including any seasonal
time adjustments such as daylight saving time) is used as the session time zone displacement. Note that the SQL session
time displacement is not changed when a seasonal time adjustment takes place while the session is open. To change
the SQL session time zone displacement use the following commands:

SET TIME ZONE <tine di spl acenent >
SET TI ME ZONE LOCAL

Thefirst command sets the displacement to the given value. The second command restoresthe original, real time zone
displacement of the session.

Datetime Values and Java

When datetime values are sent to the database using the Pr epar edSt at enent or Cal | abl eSt at ement inter-
faces, the Java object is converted to the type of the prepared or callable statement parameter. Thistype may be DATE,
TIME, or TIMESTAMP (with or without time zone). Thetime zone displacement isthe time zone of the JIDBC session.

When datetime values are retrieved from the database using the Resul t Set interface, there are two representations.
Theget St ri ng(..) methods of the Resul t Set interface, return an exact representation of the value in the SQL
type asit is stored in the database. This includes the correct number of digits for the fractional second field, and for
valueswith time zone displacement, the time zone displacement. Thereforeif TIME '12:00:00' is stored in the database,
al usersin different time zones will get '12:00:00" when they retrieve the value as a string. The get Ti ne(..) and
get Ti mest anp(..) methods of the Resul t Set interface return Java objects that are corrected for the session
time zone. The UTC millisecond value contained the j ava. sql . Ti me or j ava. sql . Ti nest anp objects will
be adjusted to the time zone of the session, thereforethet oSt ri ng() method of these objectsreturn the same values
in different time zones.

If you want to store and retrieve UTC values that are independent of any session’s time zone, you can use a TIMES-
TAMPWITH TIME ZONE column. The setTime(...) and setTimestamp(...) methods of the PreparedStatement inter-
face which have a Calendar parameter can be used to assign the values. The time zone of the given Calendar argument
isused asthe time zone. Conversely, the getTime(...) and getTimestamp(...) methods of the ResultSet interface which
have a Calendar parameter can be used with a Calendar argument to retrieve the values.

JDBC has an unfortunate limitation and does not include type codes for SQL datetime types that have a TIME
ZONE property. Therefore, for compatibility with database tools that are limited to the JDBC type codes, Hy-
perSQL reports these types by default as datetime types without TIME ZONE. You can use the URL property
hsql db. transl ate_dti _t ypes=f al se to override the default behaviour.

Interval Types

Interval types are used to represent differences between date time values. The difference between two date time values
can be measured in seconds or in months. For measurements in months, the units YEAR and MONTH are available,
while for measurements in seconds, the units DAY, HOUR, MINUTE, SECOND are available. The units can be used
individually, or asarange. Aninterval type can specify the precision of the most significant field and the second fraction
digits of the SECOND field (if it hasa SECOND field). The default precision is 2. The default second precisionis 0.

18

HyperS@L SQL Language

<interval type> ::= INTERVAL <interval qualifier>
<interval qualifier> ::= <start field> TO<end field>| <single datetine field>
<start field> ::= <non-second primary datetime field> [<left paren> <interval

| eading field precision> <right paren>]

<end field> ::= <non-second prinary datetinme field> | SECOND [<left paren>
<interval fractional seconds precision> <right paren>]

<single datetine field> ::= <non-second prinmary datetine field> [<left paren>
<interval leading field precision> <right paren>] | SECOND [<left paren>
<interval leading field precision>[<coma> <interval fractional seconds pre-
cision>] <right paren>]

<primary datetine field> ::= <non-second primary datetinme field> | SECOND
<non-second primary datetime field> ::= YEAR | MONTH | DAY | HOUR | M NUTE
<interval fractional seconds precision> ::= <unsigned integer>

<interval leading field precision> ::= <unsigned integer>

Examples of INTERVAL type definition:

| NTERVAL YEAR TO MONTH

| NTERVAL YEAR(3)

| NTERVAL DAY(4) TO HOUR

| NTERVAL M NUTE(4) TO SECOND(6)
| NTERVAL SECOND(4, 6)

The word INTERVAL indicates the general type name. The rest of the definitioniscalled an<i nt erval qual i -
fi er >. Thisdesignation isimportant, asin most expressions<i nt er val qual i fi er > isused without the word
INTERVAL.

Interval Values

An interval value can be negative, positive or zero. An interval type has all the datetime fields in the specified range.
Thesefields are similar to those in the TIMESTAMP type. The differences are as follows:

The first field of an interval value can hold any numeric value up to the specified precision. For example, the hour
fieldin HOUR(2) TO SECOND can hold values above 23 (up to 99). The year and month fields can hold zero (unlike
aTIMESTAMP value) and the maximum value of amonth field that is not the most significant field, is 11.

The standard function ABS(<i nt er val val ue expressi on>) canbeused to convert anegativeinterval value
to a positive one.

The literal representation of interval values consists of the type definition, with a string representing the interval value
inserted after the word INTERVAL. Some examples of interval literal below:

| NTERVAL ' 145 23:12:19. 345" DAY(3) TO SECONX 3)

I NTERVAL ' 3503:12: 19. 345' HOUR TO SECOND(3) /* equal to the first value */

I NTERVAL ' 19. 345" SECOND(4, 3) /* maxi mum nunber of digits for the second value is 4, and each
value is expressed with three fraction digits. */

I NTERVAL ' -23-10" YEAR(2) TO MONTH

Interval values of the types that are based on seconds can be cast into one another. Similarly those that are based on
months can be cast into one another. It is not possible to cast or convert a value based on seconds to one based on
months, or vice versa.

19

HyperS@L SQL Language

When a cast is performed to a type with a smaller least-significant field, nothing is lost from the interval value. Oth-
erwise, the values for the missing least-significant fields are discarded. Examples:

CAST (I NTERVAL ' 145 23:12:19' DAY TO SECOND AS | NTERVAL DAY TO HOUR) = | NTERVAL ' 145 23" DAY TO
HOUR

CAST(| NTERVAL ' 145 23" DAY TO HOUR AS | NTERVAL DAY TO SECOND) = | NTERVAL ' 145 23:00: 00" DAY TO
SECOND

A numeric value can be cast to an interval type. In this case the numeric value is first converted to a single-field
INTERVAL typewiththesamefield astheleast significant field of thetarget interval type. Thisvalueisthen converted
to the target interval type For example CAST(22 ASINTERVAL YEAR TO MONTH) evaluatesto INTERVAL '22'
MONTH and then INTERVAL '110' YEAR TO MONTH. Note that SQL Standard only supports caststo single-field
INTERVAL types, while HyperSQL allows casting to multi-field types as well.

An interval value can be cast to a numeric type. In this case the interval value is first converted to a single-field
INTERVAL type with the same field as the least significant filed of the interval value. The value is then converted
to the target type. For example CAST (INTERVAL '1-11' YEAR TO MONTH AS INT) evaluates to INTERVAL
'23' MONTH, and then 23.

Aninterval value can be cast into a character type, which resultsin an INTERVAL literal. A character value can be
cast into an INTERVAL type so long asit isastring with aformat compatible with an INTERVAL literal.

Two interval values can be added or subtracted so long as the types of both are based on the samefield, i.e., both are
based on MONTH or SECOND. The values are both converted to a single-field interval type with same field as the
least-significant field between the two types. After addition or subtraction, the result is converted to an interval type
that contains all the fields of the two origina types.

An interval value can be multiplied or divided by a numeric value. Again, the value is converted to a numeric, which
isthen multiplied or divided, before converting back to the original interval type.

Aninterval valueis negated by simply prefixing with the minus sign.

Interval values used in expressions are either typed values, including interval literals, or areinterval casts. The expres-
sion: <expr essi on> <i nterval qualifier>isacastof theresult of the<expr essi on>intothe INTER-
VAL type specified by the<i nterval qualifier> The cast can be forned by adding the
keywords and parent heses as follows: CAST (<expression> AS | NTERVAL <interval
qualifier>).

The exanples below feature different forms of expression that represent an
i nterval value, which is then added to the given date literal.

DATE ' 2000- 01- 01" I NTERVAL '1-10' YEAR TO MONTH /* interval literal */

DATE ' 2000-01-01' + '1-10' YEAR TO MONTH /* the string '1-10" is cast into |INTERVAL YEAR TO MONTH
*/

DATE ' 2000- 01-01' + 22 MONTH /* the integer 22 is cast into | NTERVAL MONTH, sane val ue as above
*/

DATE ' 2000- 01-01' - 22 DAY /* the integer 22 is cast into | NTERVAL DAY */

DATE ' 2000- 01-01' + COL2 /* the type of COL2 nust be an | NTERVAL type */

DATE ' 2000- 01-01' + COL2 MONTH /* COL2 nmay be a nunber, it is cast into a MONTH i nterval */

+

Datetime and I nterval Operations

An interval can be added to or subtracted from a datetime value so long as they have some fields in common. For
example, an INTERVAL MONTH cannot be added to aTIME value, whilean INTERVAL HOUR TO SECOND can.
The interval is first converted to a numeric value, then the value is added to, or subtracted from, the corresponding
field of the datetime value.

If the result of addition or subtraction is beyond the permissible range for the field, the field value is normalised and
carried over to the next significant field until all the fields are normalised. For example, adding 20 minutesto TIME

20

HyperS@L SQL Language

'23:50:10" will result successively in '23:70:10, '24:10:10' and finally TIME '00:10:10'". Subtracting 20 minutes from
theresult is performed asfollows: '00:-10:10', -1:50:10', finally TIME '23:50:10'". Notethat if DATE or TIMESTAMP
normalisation resultsin the YEAR field value out of the range (1,1000), then an exception condition is raised.

If an interval value based on MONTH is added to, or subtracted from aDATE or TIMESTAMP value, the result may
have an invalid day (30 or 31) for the given result month. In this case an exception condition is raised.

The result of subtraction of two datetime expressions is an interval value. The two datetime expressions must be of
the same type. The type of the interval value must be specified in the expression, using only the interval field names.
The two datetime expressions are enclosed in parentheses, followed by the <i nt erval qual i fi er> fields. In
the first example below, COL1 and COL2 are of the same datetime type, and the result is evaluated in INTERVAL
YEAR TO MONTH type.

(COL1 — COL2) YEAR TO MONTH /* the difference between two DATE or two Tl EMSTAMP val ues in years
and nonths */

(CURRENT_DATE — COL3) DAY /* the nunber of days between the value of COL3 and the current date */
(CURRENT_DATE - DATE ' 2000-01-01') YEAR TO MONTH /* the nunber of years and nonths since the

begi nning of this century */

CURRENT_DATE - 2 DAY /* the date of the day before yesterday */

(CURRENT_TI MESTAMP - TI MESTAMP ' 2009-01-01 00: 00: 00') DAY(4) TO SECOND(2) /* days to seconds
since the given date */

The individua fields of both datetime and interval values can be extracted using the EXTRACT function. The same
function can also be used to extract the time zone displacement fields of a datetime value.

EXTRACT ({YEAR | MONTH | DAY | HOUR | MNUTE | SECOND | TIMEZONE HOUR |
TI MEZONE_M NUTE | DAY_OF_WEEK | WEEK_OF_YEAR} FROM{<dat eti nme val ue>| <interval
val ue>})

The dichotomy between interval types based on seconds, and those based on months, stems from the fact that the
different calendar months have different numbers of days. For example, the expression, “nine months and nine days
since an event” is not exact when the date of the event is unknown. It can represent a period of around 284 days give
or take one. SQL interval values are independent of any start or end dates or times. However, when they are added to
or subtracted from certain date or timestamp values, the result may be invalid and cause an exception (e.g. adding one
month to January 30 resultsin February 30, which isinvalid).

JDBC has an unfortunate limitation and does not include type codes for SQL INTERVAL types. Therefore, for com-
patibility with database tools that are limited to the JDBC type codes, HyperSQL reports these types by default as
VARCHAR. You can use the URL property hsql db. transl ate_dti _types=fal se to override the default
behaviour.

Arrays

Array are a powerful feature of SQL:2008 and can help solve many common problems. Arrays should not be used
as a substitute for tables.

HyperSQL supports arrays of values according to the SQL:2008 Standard.

Elements of the array are either NULL, or of the same datatype. It is possible to define arrays of all supported types,
including the types covered in this chapter and user defined types, except LOB types. An SQL array is one dimensional
and is addressed from position 1. An empty array can also be used, which has no element.

Arrays can be stored in the database, as well as being used as temporary containers of values for simplifying SQL
statements. They facilitate data exchange between the SQL engine and the user's application.

The full range of supported syntax allows array to be created, used in SELECT or other statements, combined with
rows of tables and used in routine calls.

21

HyperS@L SQL Language

Array Definition

Thetype of atable column, aroutine parameter, avariable, or the return value of afunction can be defined asan array.

<array type> ::= <data type> ARRAY [<left bracket or trigraph> <naxi mum car-
dinality> <right bracket or trigraph>]

The word ARRAY is added to any valid type definition except BLOB and CLOB type definitions. If the optional
<maxi mum car di nal i t y>isnot used, the default valueis 1024. The size of the array cannot be extended beyond
maximum cardinality.

In the example below, the table contains a column of integer arrays and a column of varchar arrays. The VARCHAR
array hasan explicit maximum size of 10, which means each array can have between 0 and 10 elements. The INTEGER
array hasthe default maximum size of 1024. Theid column has adefault clause with an empty array. The default clause
can be defined only as DEFAULT NULL or DEFAULT ARRAY/|] and does not allow arrays containing elements.

CREATE TABLE t (id INT PRI MARY KEY, scores |NT ARRAY DEFAULT ARRAY[], names VARCHAR(20)
ARRAY[10])

An array can be constructed from value expressions or a query expression.

<array value constructor by enuneration> ::= ARRAY <l eft bracket or trigraph>
<array element list> <right bracket or trigraph>

<array el ement list>::= <value expression>[{ <commma> <val ue expression>}...]

<array value constructor by query> ::= ARRAY <l|left paren> <query expression>
[<order by clause>] <right paren>

In the examples below, arrays are constructed from values, column references or variables, function calls, or query
expressions.

ARRAY [1, 2, 3]

ARRAY ['HOT', 'COLD]

ARRAY [varl, var2, CURRENT DATE]

ARRAY (SELECT | ast name FROM nanest abl e ORDER BY i d)

Array Reference

The most common operations on an array element reference and assignment, which are used when reading or writing
an element of the array. Unlike Java and many other languages, arrays are extended if an element is assigned to an
index beyond the current length. This can result in gaps containing NULL elements. Array length cannot exceed the
maximum cardinality.

Elements of al arrays, including those that are the result of function calls or other operations can be referenced for
reading.

<array element reference> ::= <array val ue expression> <l eft bracket> <nuneric
val ue expression> <right bracket>

Elements of arrays that are table columns or routine variables can be referenced for writing. Thisis done in a SET
statement, either inside an UPDATE statement, or as a separate statement in the case of routine variables, OUT and
INOUT parameters.

<target array el enent specification> ::= <target array reference> <l eft bracket
or trigraph> <sinple value specification> <right bracket or trigraph>

22

HyperS@L SQL Language

<target array reference> ::= <SQL paraneter reference> | <colum reference>

Note that only simple values or variables are allowed for the array index when an assignment is performed. The
examples below demonstrates how elements of the array are referenced in SELECT and an UPDATE statement.

SELECT scores[ranki ng], nanes[ranking] FROMt JON t1l on (t.id = t1.tid)
UPDATE t SET scores[2] = 123, nanes[2] = 'Reds' WHERE id = 10

Array Operations

Several SQL operations and functions can be used with arrays.
CONCATENATION

Array concatenation is performed similar to string concatenation. All elements of the array on the right are appended
to the array on left.

<array concatenation> ::= <array val ue expression 1> <concatenati on operator>
<array val ue expression 2>

<concatenation operator> ::= ||

FUNCTIONS

Three functions operate on arrays. Details are described in the Built In Functions chapter.

CARDI NALI TY <l eft paren> <array val ue expressi on> <right paren>
MAX_CARDI NALI TY <l eft paren> <array val ue expressi on> <right paren>

Array cardinality and max cardinality are functions that return an integer. CARDINALITY returns the e ement count,
while MAX_CARDINALITY returns the maximum declared cardinality of an array.

TRI M_ARRAY <l eft paren> <array val ue expressi on> <conma> <nuneri c val ue expres-
sion> <right paren>

The TRIM_ARRAY function returns a copy of an array with the specified number of elements removed from the end
of thearray. The<array val ue expressi on> can beany expression that evaluatesto an array.

CAST

An array can be cast into an array of a different type. Each element of the array is cast into the element type of the
target array type.

UNNEST
Arrays can be converted into table references with the UNNEST keyword.
UNNEST(<array val ue expression>) [WTH ORDI NALI TY]

The<array val ue expressi on> can be any expression that evaluates to an array. A table is returned that
contains one column when WITH ORDINALITY is not used, or two columns when WITH ORDINALITY is used.
The first column contains the elements of the array (including all the nulls). When the table has two columns, the
second column contains the ordinal position of the element in the array. When UNNEST is used in the FROM clause
of aquery, it impliesthe LATERAL keyword, which meansthe array that is converted to table can belong to any table
that precedes the UNNEST in the FROM clause. Thisis explained in the Data Access and Change chapter.

COMPARISON

23

HyperS@L SQL Language

Arrays can be compared for equality, but they cannot be compared for ordering or ranges. Array expressions are
therefore not allowed in an ORDER BY clause, or in acomparison expression such as GREATER THAN. Two arrays
are equal if they have the same length and the values at each index position are either equal or both NULL.

USER DEFINED FUNCTIONS and PROCEDURES

Array parameters, variables and return values can be specified in user defined functions and procedures, including
aggregate functions. An aggregate function can return an array that contains all the scalar values that have been ag-
gregated. These capabilities allow a wider range of applications to be covered by user defined functions and easier
data exchange between the engine and the user's application.

Indexes and Query Speed

HyperSQL supports PRIMARY KEY, UNIQUE and FOREIGN KEY constraints, which can span multiple columns.

The engine createsindexesinternally to support PRIMARY KEY, UNIQUE and FOREIGN KEY constraints: aunique
index is created for each PRIMARY KEY or UNIQUE constraint; an ordinary index is created for each FOREIGN
KEY constraint.

HyperSQL alows defining indexes on single or multiple columns. Y ou should not create duplicate user-defined in-
dexes on the same column sets covered by constraints. Thiswould result in unnecessary memory and speed overheads.
See thediscussion in the System Management and Deployment Issues chapter for more information.

Indexes are crucia for adequate query speed. When range or equality conditionsareused e.g. SELECT ... WHERE
acol > 10 AND bcol = 0, anindex should exist on one of the columns that has a condition. In this example,
thebcol columnisthe best candidate. HyperSQL aways uses the best condition and index. If there are two indexes,
one on acol, and another on bcol, it will choose the index on bcol.

Queries aways return results whether indexes exist or not, but they return much faster when an index exists. As a
rule of thumb, HSQLDB is capable of internal processing of queries at over 100,000 rows per second. Any query that
runs into several secondsis clearly accessing thousands of rows. The query should be checked and indexes should be
added to the relevant columns of the tables if necessary. The EXPLAIN PLAN <query> statement can be used to see
which indexes are used to process the query.

When executing aDELETE or UPDATE statement, the engine needs to find the rows that are to be del eted or updated.
If there is an index on one of the columns in the WHERE clause, it is often possible to start directly from the first
candidate row. Otherwise al the rows of the table have to be examined.

Indexes are even more important in joins between multipletables. SELECT ... FROMt1l JONt2 ONtl.cl
= t2.c2 ispeformed by taking rows of t1 one by one and finding a matching row in t2. If there is no index on
t2.c2 then for each row of t1, al the rows of t2 must be checked. Whereas with an index, amatching row can be found
in a fraction of the time. If the query also has a conditionontl, eg., SELECT ... FROMt1l JON t2 ON
tl.cl = t2.¢c2 WHERE t1.c3 = 4 then anindex on t1.c3 would eliminate the need for checking all the
rows of t1 one by one, and will reduce query time to less than a millisecond per returned row. So if t1 and t2 each
contain 10,000 rows, the query without indexes involves checking 100,000,000 row combinations. With an index on
t2.c2, thisis reduced to 10,000 row checks and index lookups. With the additional index on t2.c2, only about 4 rows
are checked to get the first result row.

Note that in HSQL DB an index on multiple columns can be used internally as a non-unique index on the first column
in the list. For example: CONSTRAI NT nanel UNIQUE (cl, c2, c3); meansthereisthe equivalent of
CREATE | NDEX nane2 ON atabl e(cl); . Soyoudo not need to specify an extraindex if you require one
on the first column of thelist.

In HyperSQL 2.0, amulti-column index will speed up queriesthat contain joins or values on the first n columns of the
index. Y ou need NOT declare additional individual indexes on those columns unless you use queries that search only

24

HyperS@L SQL Language

on a subset of the columns. For example, rows of atable that hasa PRIMARY KEY or UNIQUE constraint on three
columns or simply an ordinary index on those columns can be found efficiently when values for all three columns, or
the first two columns, or the first column, are specified in the WHERE clause. For example, SELECT ... FROM
tl WHERE t1.c1 =4 ANDt1.c2 =6 ANDt1.c3 = 8 willuseanindexont 1(c1, c2, c3) ifitexists.

A multi-column index will not speed up queries on the second or third column only. The first column must be specified
inthe JOIN .. ON or WHERE conditions.

Sometimes query speed depends on the order of thetablesin the JOIN .. ON or FROM clauses. For exampl e the second
guery below should be faster with large tables (provided thereisan index on TB. COL3). Thereasonisthat TB. COL3
can be evaluated very quickly if it applies to the first table (and thereis an index on TB. COL3):

(TBis a very large table with only a few rows where TB. COL3 = 4)

SELECT * FROM TA JON TB ON TA COL1 = TB. COL2 AND TB. COL3 = 4;

SELECT * FROM TB JO N TA ON TA COL1 = TB. COL2 AND TB. COL3 = 4;

The general ruleisto put first the table that has a narrowing condition on one of its columns.
HyperSQL features automatic, on-the-fly indexes for views and subselects that are used in a query.
Indexes have no effect on some LIKE conditions.

Indexes are used for ORDER BY clausesif the same index is used for selection and ordering of rows.

Query Processing and Optimisation

HyperSQL does not change the order of tablesin aquery in order to optimise processing. As mentioned in the previous
section, the table that has a narrowing condition should be the first table in the query.

HyperSQL optimises queries to use indexes, for all types of range and equality conditions, including IS NULL and
NOT NULL conditions. Conditions can bein join or WHERE clauses, including all types of joins.

In addition, HyperSQL will always use an index (if one exists) for IN conditions, whether constants, variable, or
subqueries are used on the right hand side of the IN predicate.

HyperSQL can always use indexes when several conditions are combined with the AND operator, choosing a condi-
tionswhich can use anindex. Thisnow extended to all equality conditionson multiple columnsthat are part of anindex.

HyperSQL will also use indexes when several conditions are combined with the OR operator and each condition can
use an index (each condition may use a different index). For example, if a huge table has two separate columns for
first name and last name, and both columns are indexed, a query such as the following example will use the indexes
and complete in ashort time:

(TCis a very large table)

SELECT * FROM TC WHERE TC. FI RSTNAME = ' John' OR TC. LASTNAME = 'Smith' OR TC. LASTNAME =
"WIIlians'

HyperSQL optimises simple row count queries in the form of SELECT COUNT(*) FROM <table> and returns the
result immediately (this optimisation does not take place in MV CC mode).

HyperSQL can use an index on a column for SELECT MAX(<column>) FROM <table> and SELECT
MIN(<column>) FROM <table> queries. There should be an index on the <column> and the query can haveaWHERE
condition on the same column. In the exampl e bel ow the maximum value for the TB.COL 3 bel ow 1000000 isreturned.

SELECT MAX(TB. COL3) FROM TB WHERE TB.CCL < 1000000 |

25

HyperS@L SQL Language

HyperSQL can use an index on an ORDER BY clause if all the columns in ORDER BY are in a single-column or
multi-column index (in the exact order). Thisisimportant if thereisaLIMIT n (or FETCH n ROWS ONLY) clause.
In this situation, the use of index allows the query processor to access only the number of rows specifiedinthe LIMIT
clause, instead of building the whole result set, which can be huge. This also works for joined tableswhen the ORDER
BY clauseison the columns of the first tablein ajoin. Indexes are used in the same way when ORDER BY ... DESC
is specified in the query. Note that unlike other RDBM S, HyperSQL does not create DESC indexes. It can use any
index for ORDER BY ... DESC.

If thereisan equality or range condition (e.g. EQUALS, GREATER THAN) condition on the columns specified in the
ORDER BY clause, theindex is still used. But if the query contains an equality condition on another indexed column
in the table, this may take precedence and no index may be used for ORDER BY .

In the two examples below, the index on TB.COL 3 is used and only up to 1000 rows are processed and returned.

(TBis a very large table with an index on TB. COL3

SELECT * FROM TB JO N TA ON TA. COL1 = TB. COL2 WHERE TB. COL3 > 40000 ORDER BY TB. COL3 LIMT
1000;

SELECT * FROM TB JO N TA ON TA. COL1 = TB. COL2 WHERE TB. COL3 > 40000 AND TB. COL3 < 100000
ORDER BY TB. COL3 DESC LIM T 1000;

26

HyperS@L

Chapter 3. Sessions and Transactions
Fred Toussi, The HSQL Development Group

$Revision: 3601 $

Copyright 2010 Fred Toussi. Permission is granted to distribute this document without any alteration under
the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group to
distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2010-05-31 20:17:47 -0400 (Mon, 31 May 2010) $

Overview

All SQL statements are executed in sessions. When a connection is established to the database, a session is started.
The authorization of the session isthe name of the user that started the session. A session has several properties. These
properties are set by default at the start according to database settings.

SQL Statements are generally transactional statements. When a transactional statement is executed, it starts atrans-
action if no transaction is in progress. If SQL Data is modified during a transaction, the change can be undone with
a ROLLBACK statement. When a COMMIT statement is executed, the transaction is ended. If a single statement
fails, the transaction is not normally terminated. However, some failures are caused by execution of statements that
arein conflict with statements executed in other concurrent sessions. Such failuresresult in an implicit ROLLBACK,
in addition to the exception that is raised.

Schema definition and manipulation statements are also transactional according to the SQL Standard. HyperSQL 2.0
performs automatic commits before and after the execution of such transactions. Therefore, schema-rel ated statements
cannot berolled back. Thisislikely to changein future versions.

Some statements are not transactional. Most of these statements are used to change the properties of the session. These
statements begin with the SET keyword.

If the AUTOCOMMIT property of a session is TRUE, then each transactional statement is followed by an implicit
COMMIT.

The default isolation level for a session is READ COMMITTED. This can be changed using the JDBC
j ava. sql . Connecti on object and itsset Tr ansacti onl sol ati on(int |evel) method. The session
can be put in read-only mode using the set ReadOnl y(bool ean readOnl y) method. Both methods can be
invoked only after acommit or arollback, but not during a transaction.

Theisolation level and / or the readonly mode of a transaction can also be modified using an SQL statement. Y ou can
use the statement to change only the isolation mode, only the read-only mode, or both at the same time. This command
can be issued only after acommit or rollback.

SET TRANSACTI ON <transaction characteristic> [<comm> <transaction character-
istic>]

Details of the statement is described later in this chapter.
Session Attributes and Variables

Each session has several system attributes. A session can also have user-defined session variables.

27

HyperS@L Sessions and Transactions

Session Attributes

The system attributes reflect the current mode of operation for the session. These attributes can be accessed with
function calls and can be referenced in queries. For example, they can be returned using the VALUES <attri bute
function>, ... statement.

The named attributes such as CURRENT_USER, CURRENT_SCHEMA, etc. are SQL Standard functions. Other
attributes of the session, such as auto-commit or read-only modes can be read using other built-in functions. All these
functions are listed in the Built In Functions chapter.

Session Variables

Session variables are user-defined variables created the same way asthe variablesfor stored procedures and functions.
Currently, these variables cannot be used in general SQL statements. They can be assigned to IN, INOUT and OUT
parameters of stored procedures. This allows calling stored procedures which have INOUT or OUT arguments and
is useful for development and debugging. See the example in the SQL-Invoked Routines chapter, under Formal
Parameters.

Example 3.1. User-defined Session Variables

DECLARE counter | NTEGER DEFAULT 3;
DECLARE result VARCHAR(20) DEFAULT NULL;
SET count er =15;

CALL nyroutine(counter, result)

Session Tables

With necessary access privileges, sessions can access al table, including GLOBAL TEMPORARY tables, that are
defined in schemas. Although GLOBAL TEMPORARY tables have a single name and definition which appliesto all
sessions that use them, the contents of the tables are different for each session. The contents are cleared either at the
end of each transaction or when the session is closed.

Session tables are different because their definition isvisible only within the session that defines atable. The definition
is dropped when the session is closed. Session tables do not belong to schemas.

<tenporary table declaration> ::= DECLARE LOCAL TEMPORARY TABLE <table name>
<table element list>] ON COMWM T { PRESERVE | DELETE } RO\S]

The syntax for declaration is based on the SQL Standard. A session table cannot have FOREIGN KEY constraints,
but it can have PRIMARY KEY, UNIQUE or CHECK constraints. A session table definition cannot be modified by
adding or removing columns, indexes, etc.

Itispossibleto refer to a session table using its name, which takes precedence over a schematable of the same name.
To distinguish a session table from schema tables, the pseudo schema name, MODULE can be used. An exampleis
given below:

Example 3.2. User-defined Temporary Session Tables

DECLARE LOCAL TEMPORARY TABLE buffer (id | NTEGER PRI MARY KEY, textdata VARCHAR(100)) ON COM T
PRESERVE RONS

I NSERT | NTO nodul e. buffer SELECT id, firstnane || ' ' || |astname FROM custoners

-- do sone nore work

DROP TABLE nodul e. buf fer

Session tables can be created inside a transaction. Automatic indexes are created and used on session tables when
necessary for a query or other statement. By default, session table datais held in memory. If the session property

28

HyperS@L Sessions and Transactions

Transactions and Concurrency Control

HyperSQL 2.0 hasbeen fully redesigned to support different transaction isolation models. It no longer supportsthe old
1.8.x model with"dirty read". Althoughit isperfectly possibleto add an implementation of the transaction manager that
supportsthe legacy model, we thought thisis no longer necessary. The new system allows you to select the transaction
isolation model even while the engine is running and choose different isolation modes for different simultaneous
sessions.

HyperSQL 2.0 supportsthree concurrency control models, two-phase-locking (2PL), whichisthe default, multiversion
concurrency control (MV CC) and ahybrid model, whichis2PL plus multiversion rows. Within each model, it supports
some of 4 levels of transaction isolation: READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ
and SERIALIZABLE. Theisolation level is a property of each SQL session, so different sessions can have different
isolation levels. The concurrency control model is a strategy that governs all the sessions and is set for the database,
as opposed for individual sessions. In the new implementation, all isolation levels avoid the "dirty read" phenomenon
and do not read uncommitted changes made to rows by other transactions.

HyperSQL is fully multi threaded in all transaction models. Sessions continue to work simultaneously and can fully
utilise multi-core processors.

To changethe concurrency control model, the SET DATABASE TRANSACTI ON CONTROL { LOCKS | MVLOCKS
| MVCC } can beused by auser with the DBA role.

Two Phase Locking

The two-phase locking model is the default mode. It is referred to by the keyword, LOCKS. In the 2PL model, each
table that is read by a transaction is locked with a shared lock, and each table that is written to is locked with an
exclusive lock. If two sessions read and modify different tables then both go through simultaneously. If one session
triestolock atablethat hasbeen locked by the other, if both locks are shared locks, it will go ahead. If either of thelocks
isan exclusive lock, the enginewill put the session in wait until the other session commits or rolls back its transaction.
In some cases the engine will invalidate the transaction of the current session, if the action would result in deadl ock.

HyperSQL also supports explicit locking of a group of tables for the duration of the current transaction. Use of this
command blocks accessto thelocked tables by other sessions and ensuresthe current session can complete theintended
reads and writes on the locked tables.

If atableisread-only, it will not be locked by any transaction.

The READ UNCOMMITTED isolation level can be used in 2PL modes for read-only operations. It is the same as
READ COMMITTED plusread only.

The READ COMMITTED isolation level isthe default. It keeps write locks on tables until commit, but releases the
read locks after each operation.

The REPEATABLE READ level is upgraded to SERIALIZABLE. These levels keep both read and write locks on
tables until commit.

It is possible to perform some critical operations at the SERIALIZABLE level, while the rest of the operations are
performed at the READ COMMITTED level.

Note: two phase locking refers to two periods in the life of atransaction. In the first period, locks are acquired, in the
second period locks are released. No new lock is acquired after releasing alock.

Two Phase Locking with Snapshot Isolation

Thismodel isreferred to asMVLOCKS. It works the same way as normal 2PL as far as updates are concerned.

29

HyperS@L Sessions and Transactions

SNAPSHOT ISOLATION isamultiversion concurrency strategy which uses the snapshot of the whole database at the
time of the start of the transaction. In this model, read only transactions use SNAPSHOT ISOLATION. While other
sessions are busy changing the database, the read only session sees a consistent view of the database and can access
all the tables even when they are locked by other sessions for updates.

There are many applications for this mode of operation. In heavily updated data sets, this mode allows uninterrupted
read access to the data.

Lock Contention in 2PL

When multiple connections are used to access the database, the transaction manager controls their activities. When
each transaction performs only reads or writes on a single table, there is no contention. Each transaction waits until
it can obtain alock then performs the operation and commits. All contentions occur when transactions perform reads
and writes on more than one table, or perform aread, followed by awrite, on the same table.

For example, when sessions are working at the SERIALIZABLE level, when multiple sessions first read from atable
in order to check if arow exists, then insert a row into the same table when it doesn't exist, there will be regular
contention. Transaction A reads from the table, then does Transaction B. Now if either Transaction A or B attempts
to insert a row, it will have to be terminated as the other transaction holds a shared lock on the table. If instead of
two operations, a single MERGE statement is used to perform the read and write, no contention occurs because both
locks are obtained at the same time.

Alternatively, there is the option of obtaining the necessary locks with an explicit LOCK TABLE statement. This
statement should be executed before other statements and should include the names of al the tables and the locks
needed. After this statement, all the other statements in the transaction can be executed and the transaction committed.
The commit will remove all the locks.

HyperSQL is fully multi threaded. It therefore allows different transactions to execute concurrently so long as they
are not modifying the same table.

MVCC

In the MVCC model, there are no shared, read locks. Exclusive locks are used on individual rows, but their use
is different. Transactions can read and modify the same table simultaneously, generally without waiting for other
transactions.

When transactions are running at READ COMMITTED level, no conflict will normally occur. If a transaction that
runs at this level wants to modify arow that has been modified by another uncommitted transaction, then the engine
puts the transaction in wait, until the other transaction has committed. The transaction then continues automatically.
(Conflict is possibleif each transaction iswaiting for adifferent row modified by the other transaction, in which case,
one of the transactions is terminated). Thisisolation level is caled READ CONSISTENCY.

When transactions are running in REPEATABLE READ or SERIALIZABLE isolation levels, conflict ismore likely
to happen. There is no difference in operation between these two isolation levels. If atransaction that runs at these
levels wants to modify arow that has been modified by another uncommitted transaction, the engine will invalidate
the current transaction and roll back all its changes. Thisisolation level is called SNAPSHOT ISOLATION.

Inthe MV CC model, READ UNCOMMITTED ispromoted to READ COMMITTED, asthe new architectureisbased
on multi-version rows for uncommitted data and more than one version may exist for some rows.

With MV CC, when atransaction only reads data, then it will go ahead and compl ete regardless of what other transac-
tions may do. This does not depend on the transaction being read-only or the isolation modes.

30

HyperS@L Sessions and Transactions

Choosing the Transaction Model

The SQL Standard defines theisolation levels as modes of operation that avoid the three unwanted phenomena, "dirty
read", "fuzzy read" and "phantom row". The "dirty read" phenomenon occurs when a session can read a row that
has been changed by another session. The "fuzzy read" phenomenon occurs when arow that was read by a session
is modified by another session, then the first session reads the row again. The "phantom row" phenomenon occurs
when a session performs an operation that affects several rows, for example, counts the rows or modifiesthem using a
search condition, then another session adds one or more rowsthat fulfil the same search condition, then thefirst session
performs an operation that relies on the results of its last operation. According to the Standard, the SERIALIZABLE
isolation level avoidsall three phenomenaand also ensures that all the changes performed during a transaction can be
considered as a series of uninterrupted changes to the database without any other transaction changing the database
at al for the duration of these actions. The changes made by other transactions are considered to occur before the
SERIALIZABLE transaction starts, or after it ends. The READ COMMITTED level avoids "dirty read" only, while
the REPEATABLE READ leve avoids "dirty read" and "fuzzy read", but not "phantom row".

The Standard allows the engine to return a higher isolation level than requested by the application. HyperSQL pro-
motes a READ UNCOMMITTED request to READ COMMITTED and promotes a REPEATABLE READ request
to SERIALIZABLE.

The MV CC model is not covered directly by the Standard. Research has established that the READ CONSISTENCY
level fulfillsthe requirementsof (and is stronger than) the READ COMMITTED level. The SNAPSHOT ISOLATION
level is stronger than the READ CONSISTENCY level. It avoids the three anomalies defined by the Standard, and is
therefore stronger than the REPEATABLE READ level as defined by the Standard. When operating with the MVCC
model, HyperSQL treats a REPEATABLE READ or SERIALIZABLE setting for a transaction as SNAPSHOT 1SO-
LATION.

All modes can be used with as many simultaneous connections as required. The default 2PL modél is fine for appli-
cations with a single connection, or applications that do not access the same tables heavily for writes. With multiple
simultaneous connections, MV CC can be used for most applications. Both READ CONSISTENCY and SNAPSHOT
ISOLATION levels are stronger than the corresponding READ COMMITTED level in the 2PL mode. Some applica
tionsrequire SERIALIZABLE transactionsfor at |east some of their operations. For these applications, one of the 2PL
modes can be used. It is possible to switch the concurrency model while the database is operational. Therefore, the
model can be changed for the duration of some special operations, such as synchronization with another data source.

All concurrency models are very fast in operation. When operating mainly on the same tables, the MV CC model may
be faster with multiple processors.

Schema and Database Change

There are a few SQL statements that must access a consistent state of the database during their executions. These
statements, which include CHECKPOINT and BACKUP, put an exclusive lock on all the tables of the database when
they start.

Some schema manipul ation statements put an exclusive lock on one or moretables. For example changing the columns
of atable locksthe table exclusively.

In the MVCC model, all statements that need an exclusive lock on one or more tables, put an exclusive lock on the
database catal og until they complete.

The effect of these exclusive locks is similar to the execution of data manipulation statements with write locks. The
session that is about to execute the schema change statement waits until no other session is holding alock on any of
the objects. At this point it starts its operation and locks the objects to prevents any other session from accessing the
locked objects. As soon as the operation is complete, the locks are all removed.

31

HyperS@L Sessions and Transactions

Simultaneous Access to Tables

It was mentioned that there is no limit on the number of sessions that can access the tables and all sessions work
simultaneously in multi threaded execution. However there are internal resourcesthat are shared. Simultaneous access
to these resources reduces the overall efficiency of the system. MEMORY and TEXT tables do hot share resources
and do not block multi threaded access. With CACHED tables, each write operation blocks the file and its cache
until the operation isfinished. With CACHED tables, SELECT operations do not block each other, but selecting from
different tables and different parts of a large table causes the row cache to be updated frequently and will reduce
overall performance.

The new access pattern is the opposite of the access pattern of version 1.8.x. In the old version, even when 20 sessions
are actively reading and writing, only asingle session at atime performs an SQL statement compl etely, before the next
session is allowed access. In the new version, while a session is performing a SELECT statement and reading rows
of a CACHED table to build a result set, another session may perform an UPDATE statement that reads and writes
rows of the same table. The two operations are performed without any conflict, but the row cache is updated more
frequently than when one operation is performed after the other operation has finished.

Session and Transaction Control Statements

SET AUTOCOMMIT
set autocommit command
<set autocommit statement> ::= SET AUTOCCOM T { TRUE | FALSE }

When an SQL sessionisstarted by creating aJDBC connection, itisin AUTOCOMMIT mode. Inthismode, after each
SQL statement aCOMMIT is performed automatically. This statement changes the mode. It is equivalent to using the
set Aut oConmi t (bool ean aut oComi t) method of the JDBC Connect i on object.

START TRANSACTION
start transaction statement

<start transaction statenent> ::= START TRANSACTION [<transaction character-
istics>]

Start an SQL transaction and set its characteristics. All transactional SQL statements start a transaction automatically,
therefore using this statement is not necessary. If the statement is called in the middle of a transaction, an exception
isthrown.

SET DATABASE TRANSACTION CONTROL
set database transaction control

<set dat abase transacti on control statenment> ::= SET DATABASE TRANSACTI ON CONTROL
{ LOCKS | MVLOCKS | MWCC }

Set the concurrency control model for the whole database. It will wait until al sessions have been committed or rolled
back. The default is LOCKS.

SET TRANSACTION
set next transaction characteristics

<set transaction statement> ::= SET [LOCAL] TRANSACTION <transaction char-
acteristics>

32

HyperS@L Sessions and Transactions

Set the characteristics of the next transaction in the current session. This statement has an effect only on the next
transactions and has no effect on the future transactions after the next.

transaction characteristics

transaction characteristics

<transaction characteristics> ::= [<transaction node> [{ <comma> <transaction
node> }...]]
<transaction node> ::= <isolation |level> | <transaction access node> | <di ag-

nostics size>

<transaction access node> ::= READ ONLY | READ WRI TE

<isolation level > ::= | SOLATI ON LEVEL <l evel of isolation>

<l evel of isolation> ::= READ UNCOW TTED | READ COWM TTED | REPEATABLE READ
| SERIALI ZABLE

<di agnostics size> ::= D AGNOSTICS S| ZE <nunber of conditions>

<nunber of conditions> ::= <sinple val ue specification>

Specify transaction characteristics.

Example 3.3. Setting Transaction Characteristics

SET TRANSACTI ON READ ONLY
SET TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE
SET TRANSACTI ON READ WRI TE, | SOLATI ON LEVEL READ COWM TTED

SET CONSTRAINTS
set constraints mode statement

<set constraints npde statement> ::= SET CONSTRAI NTS <constraint nane |ist>
{ DEFERRED | | MVEDI ATE }

<constraint nanme list> ::= ALL | <constraint nanme> [{ <comma> <constraint
nane> }...]

If the statement isissued during atransaction, it appliesto the rest of the current transaction. If the statement isissued
when atransaction is not active then it applies only to the next transaction in the current session. HyperSQL does not
yet support this feature.

LOCK TABLE
lock table statement

<lock table statenent> ::= LOCK TABLE <table name> { READ | WRITE} [, <table
nane> { READ | WRITE} ...]}

In some circumstances, where multiple simultaneous transactions are in progress, it may be necessary to ensure a
transaction consisting of several statements is completed, without being terminated due to possible deadlock. When
this statement is executed, it waits until it can obtain al the listed locks, then returns. The SQL statements following
this statements use the locks already obtained (and obtain new locks if necessary) and can proceed without waiting.

33

HyperS@L Sessions and Transactions

All the locks are released when a COMMIT or ROLLBACK statement is issued. Currently, this command does not
have any effect when the database transaction control model is MV CC.

Example 3.4. Locking Tables

\ LOCK TABLE table_a WRI TE, table_b READ

SAVEPOINT

savepoint statement

<savepoi nt statenment> ::= SAVEPO NT <savepoi nt specifier>
<savepoi nt specifier> ::= <savepoi nt nanme>

Establish a savepoint. This command is used during an SQL transaction. It establishes a milestone for the current
transaction. The SAVEPOINT can be used at alater point in the transaction to rollback the transaction to the milestone.

RELEASE SAVEPOINT
release savepoint statement
<rel ease savepoi nt statenment> ::= RELEASE SAVEPO NT <savepoi nt specifier>

Destroy a savepoint. This command israrely used asit is not very useful. It removes a SAVEPOINT that has already
been defined.

COMMIT

commit statement

<commt statement> ::= COWM T [WORK] [AND[NO] CHAIN]

Terminate the current SQL-transaction with commit. This make all the changes to the database permanent.
ROLLBACK

rollback statement

<rol Il back statenent> ::= ROLLBACK [WORK'] [AND[NO] CHAIN]

Rollback the current SQL transaction and terminate it. The statement rolls back all the actions performed during the
transaction. If NO CHAIN is specified, a new SQL transaction is started just after the rollback. The new transaction
inherits the properties of the old transaction.

ROLLBACK TO SAVEPOINT
rollback statement
<rol | back statenent> ::= ROLLBACK [WORK] TO SAVEPO NT <savepoi nt specifier>

Rollback part of the current SQL transaction and continue the transaction. The statement rolls back al the actions per-
formed after the specified SAVEPOINT was created. The same effect can be achieved with ther ol | back(Save-
poi nt savepoi nt) method of the JDBC Connect i on object.

Example 3.5. Rollback

\ -- performsone inserts, deletes, etc.

HyperS@L Sessions and Transactions

SAVEPO NT A

-- performsone inserts, deletes, selects etc.

ROLLBACK WORK TO SAVEPO NT A

-- all the work after the declaration of SAVEPO NT A is rolled back

DISCONNECT

disconnect statement

<di sconnect statement> ::= DI SCONNECT

Terminate the current SQL session. Closing a JDBC connection has the same effect as this command.
SET SESSION CHARACTERISTICS

set session characteristics statement

<set session characteristics statenment> ::= SET SESSI ON CHARACTERI STICS AS
<sessi on characteristic list>

<session characteristic list>::= <session characteristic>][{ <comm> <session
characteristic> }...]

<sessi on characteristic> ::= <session transaction characteristics>

<session transaction characteristics> ::= TRANSACTION <transaction npde>
[{ <commma> <transaction node> }...]

Set one or more characteristics for the current SQL-session. This command is used to set the transaction mode for the
session. Thisenduresfor all transactions until the session is closed or the next use of this command. The current read-
only mode can be accessed with the ISREADONLY () function.

Example 3.6. Setting Session Characteristics

SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON READ ONLY
SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE
SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON READ WRI TE, | SOLATI ON LEVEL READ COWM TTED

SET SESSION AUTHORIZATION
set session user identifier statement

<set session user identifier statenent> ::= SET SESSI ON AUTHORI ZATI ON <val ue
speci fication>

Set the SQL -session user identifier. This statement changesthe current user. The user that executes this command must
have the CHANGE_AUTHORIZATION role, or the DBA role. After this statement is executed, all SQL statements
are executed with the privileges of the new user. The current authorisation can be accessed with the CURRENT _USER
and SESSION_USER functions.

Example 3.7. Setting Session Authorization

SET SESSI ON AUTHORI ZATI ON ' FELI X
SET SESSI ON AUTHORI ZATI ON SESSI ON_USER

SET ROLE

35

HyperS@L Sessions and Transactions

set role statement

<set role statenent> ::= SET ROLE <rol e specification>
<rol e specification> ::= <val ue specification> | NONE

Set the SQL -session role name and the current role name for the current SQL -session context. The user that executes
this command must have the specified role. If NONE is specified, then the previous CURRENT_ROLE is eliminated.
The effect of this lasts for the lifetime of the session. The current role can be accessed with the CURRENT_ROLE
function.

SET TIME ZONE

set local time zone statement

<set local time zone statement> ::= SET TIME ZONE <set tinme zone val ue>
<set tine zone value> ::= <interval value expression> | LOCAL

Set the current default time zone displacement for the current SQL-session. When the session starts, the time zone
displacement is set to the time zone of the client. This command changes the time zone displacement. The effect of
this lasts for the lifetime of the session. If LOCAL is specified, the time zone displacement reverts to the local time
zone of the session.

Example 3.8. Setting Session Time Zone

SET TI ME ZONE LOCAL
SET TI ME ZONE | NTERVAL ' +6: 00' HOUR TO M NUTE

SET CATALOG

set catalog statement
<set catalog statement> ::= SET <catal og nane characteristic>
<cat al og name characteristic> ::= CATALOG <val ue speci fication>

Set the default schema name for unqualified names used in SQL statements that are prepared or executed directly in
the current sessions. Asthereisonly one catalog in the database, only the name of this catalog can be used. The current
catalog can be accessed with the CURRENT_CATALOG function.

SET SCHEMA

set schema statement

<set schemma statenent> ::= SET <schema nane characteristic>

<schema name characteristic> ::= SCHEMA <val ue specification> | <schema nane>

Set the default schema name for unqualified names used in SQL statements that are prepared or executed directly in
the current sessions. The effect of thislastsfor the lifetime of the session. The SQL Standard form requires the schema
name as a single-quoted string. HyperSQL aso alows the use of the identifier for the schema. The current schema
can be accessed with the CURRENT_SCHEMA function.

SET PATH

set path statement

36

HyperS@L Sessions and Transactions

<set path statenent> ::= SET <SQ.-path characteristic>
<SQL-path characteristic> ::= PATH <val ue specification>

Set the SQL -path used to determine the subject routine of routine invocations with unqualified routine names used in
SQL statements that are prepared or executed directly in the current sessions. The effect of this lasts for the lifetime
of the session.

SET MAXROWS
Set max rows statement
<set max rows statenent> ::= SET MAXROAS <unsigned integer literal>

The normal operation of the session has no limit on the number of rows returned from a SELECT statement. This
command set the maximum number of rows of the result returned by executing queries.

This statement has a similar effect to the set MaxRows (i nt nmax) method of the JDBC St at enent interface,
but it affects the results returned from the next statement execution only. After the execution of the next statement,
the MAXROWS limit is removed.

Only zero or positive values can be used with this command. The value overrides any value specified with
set MaxRows (i nt max) method of a JDBC statement. The statement SET MAXROAS 0 means no limit.

It is possible to limit the number of rows returned from SELECT statements with the FETCH <n> ROWS ONLY, or
its alternative, LIMIT <n>. Therefore this command is not recommended for general use. The only legitimate use of
this command is for checking and testing queries that may return very large numbers of rows.

SET SESSION RESULT MEMORY ROWS
set session result memory rows statement

<set session result nenory rows statenent> ::= SET SESSI ON RESULT MEMORY RO\S
<unsi gned integer literal >

By default the session uses memory to build result sets, subquery results and temporary tables. This command sets
the maximum number of rows of the result (and temporary tables) that should be kept in memory. If the row count
of the result or temporary table exceeds the setting, the result is stored on disk. The default is 0, meaning al result
sets are held in memory.

This statement applies to the current session only. The general database setting is:

SET DATABASE DEFAULT RESULT MEMORY ROAS <unsigned integer literal >
SET IGNORECASE

set ignore case statement

<set ignore case statenent> ::= SET | GNORECASE { TRUE | FALSE }

Setsthe type used for new VARCHAR table columns. By default, character columnsin new databases are case sensi-
tive. If SET | GNORECASE TRUEisused, all VARCHAR columnsin new tablesare set to VARCHAR_| GNORECASE.
It is possible to specify the VARCHAR | GNORECASE type for the definition of individual columns. So it is possible
to have some columns case sensitive and some not, even in the same table. This statement must be switched before
creating tables. Existing tables and their data are not affected.

37

HyperS@L

Chapter 4. Schemas and Database Objects
Fred Toussi, The HSQL Development Group

$Revision: 3622 $

Copyright 2009 Fred Toussi. Permission is granted to distribute this document without any alteration under
the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group to
distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2010-06-04 11:33:51 -0400 (Fri, 04 Jun 2010) $

Overview

The persistent elements of an SQL environment are database objects. The database consists of catalogs plus autho-
rizations.

A catalog contains schemas, while schemas contain the objects that contain data or govern the data.

Each catalog contains a special schema called INFORMATION_SCHEMA. This schema is read-only and contains
some views and other schema objects. The views contain lists of all the database objects that exist within the catalog,
plus al authorizations.

Each database object has aname. A name is an identifier and is unique within its name-space.

Schemas and Schema Objects

In HyperSQL, thereis only one catalog per database. The name of the catalog isPUBLIC. Y ou can rename the catalog
withthe ALTER CATALOG RENAME TOstatement. All schemas belong the this catalog. The catalog name has no
relation to the file name of the database.

Each database has also an internal "unique" name which isautomatically generated when the databaseis created. This
nameis used for event logging. Y ou can also change this unique name.

Schema objects are database objects that contain data or govern or perform operations on data. By definition, each
schema object belongs to a specific schema.

Schema objects can be divided into groups according to their characteristics.

» Some kinds of schema objects can exist independently from other schema object. Other kinds can exist only as an
element of another schema object. These dependent objects are automatically destroyed when the parent object is
dropped.

 Separate name-spacesexistsfor different kinds of schema object. Some name-spaces are shared between two similar
kinds of schema objects.

» There can be dependencies between various schema objects, as a schema object can include references to other
schema objects. These references can cross schema boundaries. Interdependence and cross referencing between
schema objectsis allowed in some circumstances and disallowed in some others.

 Schema objects can be destroyed with the DROP statement. |f dependent schema objects exist, a DROP statement
will succeed only if it has a CASCADE clause. In this case, dependent objects are also destroyed in most cases. In
some cases, such as dropping DOMAIN objects, the dependent objects are not destroyed, but modified to remove
the dependency.

38

HyperS@L Schemas and Database Objects

A new HyperSQL catalog contains an empty schema called PUBLIC. By default, this schema is the initia schema
when anew session is started. New schemas and schema objects can be defined and used in the PUBLIC schema, as
well as any new schemathat is created by the user. Y ou can rename the PUBLIC schema.

HyperSQL allows all schemas to be dropped, except the schema that is the default initial schema for new sessions
(by default, the PUBLIC schema). For this schema, a DROP SCHEMA ... CASCADE statement will succeed but will
result in an empty schema, rather than no schema.

The statements for setting the initial schema for users are described in the Statements for Authorization and Access
Control chapter.

Names and References

The name of a schema object is an <i dent i fi er >. The name belongs to the name-space for the particular kind
of schema object. The name is unique within its name-space. For example, each schema has a separate name-space
for TRIGGER objects.

In addition to the name-spaces in the schema. Each table has a name-space for the names of its columns.

Because a schema object is always in a schema and a schema alwaysin acatalog, it is possible, and sometimes nec-
essary, to qualify the name of the schema object that isbeing referenced in an SQL statement. Thisis done by forming
an<i dentifier chai n>.Insomecontexts, only asimple<i denti fi er >canbeusedandthe<i denti fi er
chai n> isprohibited. While in some other contexts, the use of <i denti fi er chai n>isoptional. Anidentifier
chain isformed by qualifying each object with the name of the object that owns its name-space. Therefore a column
name is prefixed with atable name, atable nameis prefixed with a schema name, and a schema nameis prefixed with
a catalog name. A fully qualified column name is in the form <cat al og name>. <schema nane>. <t abl e
name>. <col unm nane>, likewise, afully qualified sequence nameisintheform<cat al og nane>. <schema
nanme>. <sequence nane>.

HyperSQL extends the SQL standard to allow renaming all database objects. The ALTER ... RENAME TO command

has dlightly different forms depending on the type of object. If an object is referenced in a VIEW or ROUTINE
definition, it is not always possible to rename it.

Character Sets

A CHARACTER SET isthe whole or asubset of the UNICODE character set.
A character set name canonly bea<r egul ar i denti fi er>. Thereisaseparate name-space for character sets.

There are severa predefined character sets. These character sets belong to INFORMATION_SCHEMA. However,
when they are referenced in a statement, no schema prefix can be used in the statement that references them.

The following character sets have been specified by the SQL Standard:

SQL_TEXT, SQL_IDENTIFIER, SQL_CHARACTER, ASCII_GRAPHIC, GRAPHIC IRV, ASCIl_FULL,
ISO8BIT, LATINL, UTF32, UTF16, UTFS.

The ASCII_GRAPHIC isthe same as GRAPHIC IRV and ASCII_FULL isthe same as|SO8BIT.
Most of the character sets are defined by well-known standards such as UNICODE.
TheSQL_CHARACTER consistsof ASCI| letters, digitsand the symbolsused in the SQL language. The SQL_TEXT,

SQL_IDENTIFIER are implementation defined. HyperSQL defines SQL_TEXT as the UNICODE character set and
SQL_IDENTIFIER as the UNICODE character set minus the SQL language special characters.

39

HyperS@L Schemas and Database Objects

The character repertoire of HyperSQL isthe UTF16 character set, which coversall possible character sets. If aprede-
fined character set is specified for a table column, then any string stored in the column must contain only characters
from the specified character set.

Early releases of HyperSQL version 2.0 may not enforce the CHARACTER SET that is specified for a column and
may accept any character string.

Collations

A COLLATION is the method used for ordering character strings in ordered sets and to determine equivalence of
two character strings.

There are several predefined collations. These collations belong to INFORMATION_SCHEMA. However, when they
are referenced in a statement, no schema prefix can be used in the statement that references them.

There is a separate name-space for collations..
Collations for alarge number of languages are supported by HyperSQL.

Early releases of HyperSQL version 2.0 only support asingle collation for the whole database.

Distinct Types

A distinct, user-defined TY PE is simply based on a built-in type. A distinct TYPE is used in table definitions and in
CAST statements.

Digtinct types share a name-space with domains.

Domains

A DOMAIN is a user-defined type, simply based on a built-in type. A DOMAIN can have constraints that limit the
values that the DOMAIN can represent. A DOMAIN can be used in table definitions and in CAST statements.

Distinct types share a name-space with domains.

Number Sequences

A SEQUENCE object produces INTEGER valuesin sequence. The SEQUENCE can be referenced in special contexts
only within certain SQL statements. For each row where the object is referenced, its value isincremented.

There is a separate name-space for SEQUENCE objects.

IDENTITY columns are columns of tables which have an internal, unnamed SEQUENCE object.

SEQUENCE objectsand IDENTITY columns are supported fully according to the latest SQL 2008 Standard syntax.
Sequences

The SQL:2008 syntax and usage is different from what is supported by many existing database engines. Sequences
are created with the CREATE SEQUENCE command and their current value can be modified at any timewith ALTER
SEQUENCE. The next value for a sequence is retrieved with the NEXT VALUE FOR <name> expression. This
expression can be used for inserting and updating table rows.

Example 4.1. inserting the next sequence valueinto atablerow

‘I NSERT | NTO nyt abl e VALUES 2, 'John', NEXT VALUE FOR nysequence;

40

HyperS@L Schemas and Database Objects

You can also use it in select statements. For example, if you want to number the returned rows of a SELECT in
sequential order, you can use:

Example 4.2. numbering returned rows of a SELECT in sequential order

'SELECT NEXT VALUE FOR nysequence, col 1, col 2 FROM nytable WHERE ... |

In version 2.0, the semantics of sequencesis exactly as defined by SQL:2008. If you use the same sequence twice in
the samerow in an INSERT statement, you will get the same value as required by the Standard.

The correct way to use a sequence value is the NEXT VALUE FOR expression. You can query the SEQUENCES
table for the next value that will be returned from any of the defined sequences. The SEQUENCE_NAME column
contains the name and the NEXT_VALUE column contains the next value to be returned. Note that this is only for
getting information and you should not use the sequence value.

I dentity Auto-Increment Columns

Each table can contain a single auto-increment column, known asthe IDENTITY column. AnIDENTITY columnisa
SMALLINT, INTEGER, BIGINT, DECIMAL or NUMERIC columnwithitsvalue generated by asequence generator.

In HyperSQL 2.0, an IDENTITY column is not by default treated as the primary key for the table (as a result, mul-
ti-column primary keys are possible with an IDENTITY column present).

The SQL standard syntax is used, which allows the initial value and other options to be specified.

<colname> [INTEGER | BIG@ NT | DECI MAL | NUMERI C] GENERATED { BY DEFAULT | ALWAYS} AS | DENTITY
[(<options>)] [PRI MARY KEY]

When you add a new row to such atable using an | NSERT | NTO <t abl enanme> ... statement, you can use
the DEFAULT keyword for the IDENTITY column, which results in an auto-generated value for the column. The
| DENTI TY() function returns the last value inserted into any IDENTITY column by this session. Each session
manages this function call separately and is not affected by insertsin other sessions. Use CALL | DENTI TY() as
an SQL statement to retrieve this value. If you want to use the value for afield in achild table, you can use | NSERT
| NTO <chi |l dtabl e> VALUES (..., IDENTITY(),...);.Bothtypesof cal to | DENTI TY() must be
made before any additional update or insert statements are issued by the session.

Thelast inserted IDENTITY value can also beretrieved via JDBC, by specifying the Statement or PreparedStatement
object to return the generated value.

The next IDENTITY value to be used can be changed with following statement. Note that this statement is not used
in normal operation and is only for special purposes:

‘ALTER TABLE ALTER COLUWN <col unn name> RESTART W TH <new val ue>; \

For backward compatibility, support has been retained for CREATE TABLE <t abl enane>(<col nane> | DEN
TITY, ...) asashortcut which definesthe column both asan IDENTITY column and aPRIMARY KEY column.
Also, for backward compatibility, it is possible to use NULL as the value of an IDENTITY column in an INSERT
statement and the value will be generated automatically. Y ou should avoid these compatibility features as they may
be removed from future versions of HyperSQL.

In the following example, the identity value for the first INSERT statement is generated automatically using the DE-
FAULT keyword. The second INSERT statement uses a call to the IDENTITY () function to populate a row in the
child table with the generated identity value.

CREATE TABLE star (id | NTEGER GENERATED BY DEFAULT AS | DENTI TY PRI MARY KEY,
firstnane VARCHAR(20),
| ast name VARCHAR(20))

CREATE TABLE novies (starid |INTEGER novieid | NTEGER PRI MARY KEY, title VARCHAR(40))

41

HyperS@L Schemas and Database Objects

INSERT I NTO star (id, firstname, |astnane) VALUES (DEFAULT, 'Felix', 'the Cat')
I NSERT | NTO novies (starid, novieid, title) VALUES (IDENTITY(), 10, 'Felix in Hollywood')

Tables

In the SQL environment, tables are the most essential components, as they hold all persistent data.

If TABLE isconsidered as metadata (i.e. without its actual data) itiscalled arelationin relational theory. It has one or
more columns, with each column having a distinct name and a data type. A table usually has one or more constraints
which limit the values that can potentially be stored in the TABLE. These constraints are discussed in the next section.

A single column of the table can be defined as IDENTITY. The values stored in this column are auto-generated and
are based on an (unnamed) identity sequence.

Views

A VIEW is similar to a TABLE but it does not permanently contain rows of data. A view is defined as a QUERY
EXPRESSION, which is often a SELECT statement that references views and tables, but it can also consist of a
TABLE CONSTRUCTOR that does not reference any tables or views.

A view has many uses:

* Hide the structure and column names of tables. The view can represent one or more tables or views as a separate
table. This can include aggregate data, such as sums and averages, from other tables.

» Allow access to specific rows in atable. For example, allow access to records that were added since a given date,
while hiding older records.

» Allow accessto specific columns. For example allow access to columns that contain non-confidential information.
Note that this can also be achieved with the GRANT SELECT statement, using column-level privileges

A VIEW that returns the columns of a single ordinary TABLE may be updatable. Some updatable views are in-
sertable-into. When rows of an updatable view are updated, or new rows are inserted, these changes are reflected in
the base table. A VIEW definition may specify that the inserted or updated rows conform to the search condition of
the view. Thisis done with the CHECK OPTION clause.

Views share a name-space with tables.

Constraints

A CONSTRAINT isachild schema object and can belongto aDOMAIN or aTABLE. CONSTRAINT objects can be
defined without specifying aname. In this case the system generates anamefor the new object beginningwith"SYS _".

InaDOMAIN, CHECK constraints can be defined that limitsthe val ue represented by the DOMAIN. These constraints
work exactly like a CHECK constraint on a single column of atable as described below.

InaTABLE, aconstraint takes three basic forms.
CHECK

A CHECK constraint consists of a<sear ch condi t i on> that must not be false (can be unknown) for each row
of the table. The <search condi ti on> can reference al the columns of the current row, and if it contains a
<subquer y>, other tables and views in the database (excluding its own table).

NOT NULL

A simple form of check constraint isthe NOT NULL constraint, which applies to asingle column.

42

HyperS@L Schemas and Database Objects

UNIQUE

A UNIQUE constraint is based on an equality comparison of values of specific columns (taken together) of one row
with the same values from each of the other rows. The result of the comparison must never be true (can be false or
unknown). If a row of the table has NULL in any of the columns of the constraint, it conforms to the constraint. A
unique constraint on multiple columns (c1, c2, ¢3, ..) meansthat in no two rows, the sets of values for the columns can
be equal unless at lease one of them is NULL. Each single column taken by itself can have repeat values in different
rows. The following example satisfies a UNIQUE constraint on the two columns

Example 4.3. Column values which satisfy a 2-column UNIQUE constraint

1, 2
2, 1
2, 2
NULL, 1
NULL, 1
1, NULL
NULL, NULL
NULL, NULL

PRIMARY KEY

A PRIMARY KEY constraint is equivalent to a UNIQUE constraint on one or more NOT NULL columns. Only one
PRIMARY KEY can be defined in each table.

FOREIGN KEY

A FOREIGN key constraint is based on an equality comparison between values of specific columns (taken together)
of each row with the values of the columns of a UNIQUE constraint on another table or the same table. The result
of the comparison must never be false (can be unknown). A special form of FOREIGN KEY constraint, based on its
CHECK clause, alows the result to be unknown only if the values for all columns are NULL. A FOREIGN key can
be declared only if aUNIQUE constraint exists on the referenced columns.

Constraints share a name space with assertions.

Assertions

An ASSERTION isatop-level schema objects. It consists of a<sear ch condi ti on> that must not be false (can
be unknown).

Assertions share a hame-space with constraints

Triggers

A TRIGGER is achild schema object that aways belongsto aTABLE or aVIEW.

Each time a DELETE, UPDATE or INSERT is performed on the table or view, additional actions are taken by the
triggers that have been declared on the table or view.

Triggers are discussed in detail in chapter Triggers .
Routines
Routines are user-defined functions or procedures. The names and usage of functions and procedures are different.

FUNCTION is aroutine that can be referenced in many types of statements. PROCEDURE is a routine that can be
referenced only in a CALL statement.

43

HyperS@L Schemas and Database Objects

There is a separate name-space for routines.

Because of the possibility of overloading, each routine can have more than one name. The name of the routine is
the same for all overloaded variants, but each variant has a specific name, different from al other routine names and
specific names in the schema. The specific name can be specified in the routine definition statement. Otherwise it is
assigned by the engine. The specific nameis used only for schema manipulation statements, which need to reference a
specific variant of the routine. For example, if aroutine has two signatures, each signature has its own specific name.
This allows the user to drop one of the signatures while keeping the other.

Routines are discussed in detail in chapter SQL-Invoked Routines .

Indexes

Indexes are an implementation-defined extension to the SQL Standard. HyperSQL has a dedicated name-space for
indexes in each schema.

Statements for Schema Definition and Manipulation

Schemas and schema objects can be created, modified and dropped. The SQL Standard defines arange of statements
for this purpose. HyperSQL supports many additional statements, especially for changing the properties of existing
schema objects.

Common Elements and Statements

These elements and statements are used for different types of object. They are described here, before the statements
that can use them.

identifier
definition of identifier

<identifier> ::= <regular identifier>| <delimted identifier>| <SQ |anguage
identifier>

<delimted identifier> ::= <doubl e quote> <character sequence> <doubl e quote>
<regul ar identifier> ::= <special character sequence>
<SQL language identifier> ::= <special character sequence>

A <delimted identifier>isasequence of characters enclosed with double-quote symbols. All characters
are alowed in the character sequence.

A <regul ar identifier>isaspecia sequence of characters. It consists of letters, digits and the underscore
characters. It must begin with aletter.

A <SQL | anguage i dentifier>issimilarto<regul ar identifi er> buttheletterscanrangeonly from
A-Z inthe ASCII character set. Thistype of identifier is used for names of CHARACTER SET objects.

If the character sequence of a delimited identifier is the same as an undelimited identifier, it represents the same
identifier. For example "JOHN" is the same identifier as JOHN. Ina<r egul ar i denti fi er > the case-normal
formis considered for comparison. This form consists of the upper-case of equivalent of all the letters.

The character sequence length of al identifiers must be between 1 and 128 characters.

44

HyperS@L Schemas and Database Objects

A reserved word isonethat is used by the SQL Standard for special purposes. Itissimilartoa<r egul ar i denti -
fi er >butit cannot be used asanidentifier for user objects. If areserved word is enclosed in double quote characters,
it becomes a quoted identifier and can be used for database objects.

CASCADE or RESTRICT
drop behavior
<drop behavi or> ::= CASCADE | RESTRICT

The <drop behavi or > isarequired element of statements that drop a SCHEMA or a schema object. If <dr op
behavi or > is not specified then RESTRI CT isimplicit. It determines the effect of the statement if there are other
objects in the catalog that reference the SCHEMA or the schema object. If RESTRICT is specified, the statement
failsif there are referencing objects. If CASCADE is specified, all the referencing objects are modified or dropped
with cascading effect. Whether a referencing object is modified or dropped, depends on the kind of schema object
that is dropped.

IFEXISTS
drop condition (Hyper SQL)
<if exists clause> ::=1F EXI STS

Thisclauseisnot part of the SQL standard andisaHyperSQL extension to some commandsthat drop objects (schemas,
tables, views, sequences and indexes). If it is specified, then the statement does not return an error if the drop statement
isissued on a non-existent object.

SPECIFIC

specific routine designator

<specific routine designator> ::= SPECI FIC <routine type> <specific nane>
<routine type> ::= ROUTINE | FUNCTION | PROCEDURE

This clause is used in statements that need to specify one of the multiple versions of an overloaded routine. The
<speci fi c nane>istheonespecifiedinthe<r outi ne defi ni ti on> statement.

Renaming Objects

RENAME

rename statement (Hyper SQL)

<rename statement> ::= ALTER <object type> <nane> RENAME TO <new nane>

<obj ect type> ::= CATALOG | SCHEMA | DOVAIN | TYPE | TABLE | CONSTRAINT | | NDEX

| ROUTINE | SPECIFI C ROUTI NE

<colum renane statement> ::= ALTER TABLE <table name> ALTER COLUWN <nane>
RENAME TO <new nane>

This statement is used to rename an existing object. It is not part of the SQL Standard. The specified <nane> isthe
existing name, which can be qualified with a schema name, while the <new namne> isthe new name for the object.

Commenting Objects

45

HyperS@L Schemas and Database Objects

COMMENT
comment statement (Hyper SQL)

<comment statement> ::= COMMENT ON { TABLE | COLUW | RQUTINE } <nanme> IS
<character string literal >

Adds a comment to the object metadata, which can later be read from an INFORMATION_SCHEMA view. This
command is not part of the SQL Standard. The strange syntax is due to compatibility with other database engines
that support the statement. The <nanme> isthe name of atable, view, column or routine. The name of the column
consists of dot-separated <t abl e nane> . <col unm nane>. The name of the table, view or routine can be
asimple name. All names can be qualified with a schema name. If there is aread a comment on the object, the new
comment will replaceit.

The comments appear in the resultsreturned by JDBC DatabaseM etaDatamethods, getTables() and getColumns(). The
INFORMATION_SCHEMA.SYSTEM_COMMENTS view contains the comments. Y ou can query this view using
the schema, table, and column names to retreive the comments.

Schema Creation

CREATE SCHEMA
schema definition

The CREATE_SCHEMA or DBA roleisrequiredin order to create aschema. A schemacan be created with or without
schemaobjects. Schema objects can always be added after creating the schema, or existing ones can be dropped. Within
the <schema defi ni ti on> statement, all schema object creation takes place inside the newly created schema.
Therefore, if a schema name is specified for the schema objects, the name must match that of the new schema. In
addition to statements for creating schema objects, the statement can include instances of <gr ant st at enent >
and <rol e definition>. Thisisacurious aspect of the SQL standard, as these elements do not really belong
to schema creation.

<schema definition> ::= CREATE SCHEMA <schema nane cl ause> [<schema character
set specification>] [<schema elenment>. ..]
<schema nane cl ause> :: = <schema nanme> | AUTHORI ZATI ON <aut hori zation identifier>

| <schema name> AUTHORI ZATI ON <aut hori zation identifier>

If the name of the schemais specified simply as<schema nane>, then the AUTHORIZATION isthe current user.
Otherwise, the specified <aut hori zati on identifier>isusedasthe AUTHORIZATION for the schema.
If <schema nane> is omitted, then the name of the schema is the same as the specified <aut hori zati on
identifier>.

<scherma elenment> ::= <table definition> | <view definition> | <domain defini-
tion> | <character set definition>| <collation definition>| <transliteration
definition>| <assertion definition>| <trigger definition>| <user-defined type
definition> | <user-defined cast definition> | <user-defined ordering defini-
tion> | <transformdefinition> | <schema routine> | <sequence generator defi-
nition> | <grant statement> | <role definition>

An example of the command is given below. Note that a single semicolon appears at the end, there should be no
semicolon between the statements:

CREATE SCHEMA ACCOUNTS AUTHORI ZATI ON DBA
CREATE TABLE AB(A | NTEGER, ...)
CREATE TABLE CD(C CHAR(10), ...)
CREATE VIEW VI AS SELECT ...

46

HyperS@L Schemas and Database Objects

GRANT SELECT ON AB TO PUBLI C
GRANT SELECT ON CD TO JCE;

It is not really necessary to create a schema and al its objects as one command. The schema can be created first, and
its objects can be created one by one.

DROP SCHEMA
drop schema statement

<drop schena statenent> ::= DROP SCHEMA [| F EXI STS] <schema nane> [| F EXI STS]
<dr op behavi or >

This command destroys an existing schema. If <dr op behavi or > is RESTRI CT, the schema must be empty,
otherwise an error israised. If CASCADE is specified, then al the objects contained in the schema are destroyed with
a CASCADE option.

Table Creation and Manipulation
CREATE TABLE
table definition

<table definition> ::= CREATE [{ <table scope> | <table type>1}] TABLE <table
nane> <table contents source> [ON COWM T { PRESERVE | DELETE } ROWS]

<tabl e scope> ::= { GLOBAL | LOCAL } TEMPORARY

<table type> :: MEMORY | CACHED

<tabl e contents source> ::= <table elenent list> | <as subquery clause>

<table elenment list> ::= <left paren> <table element> [{ <conma> <table ele-
ment> }...] <right paren>

<table elenment> ::= <columm definition>| <table constraint definition>| <like
cl ause>

like clause

A <li ke cl ause> copiesall column definitions from another table into the newly created table. Its three options
indicateif the<def aul t cl ause>,<i dentity col unm specificati on>and<generati on cl ause>
associated with the column definitions are copied or not. If an option is not specified, it defaultsto EXCLUDI NG. The
<gener ati on cl ause> refersto columns that are generated by an expression but not to identity columns. All
NOT NULL constraints are copied with the original columns, other constraints are not. The<l i ke cl ause> can
be used multiple times, allowing the new table to have copies of the column definitions of one or more other tables.

‘CREATE TABLE t (id | NTEGER PRI MARY KEY, LIKE atabl e | NCLUDI NG DEFAULTS EXCLUDI NG | DENTI TY)

<like clause> ::= LIKE <table name> [<like options>]

<li ke options> ::= <like option>...

<like option> ::= <identity option> | <colum default option> | <generation
opti on>

<identity option> ::= I NCLUDI NG | DENTI TY | EXCLUDI NG | DENTI TY

47

HyperS@L Schemas and Database Objects

<col um default option> ::= | NCLUDI NG DEFAULTS | EXCLUDI NG DEFAULTS
<generati on option> ::= | NCLUDI NG GENERATED | EXCLUDI NG GENERATED
as subquery clause

<as subquery clause> ::= [<left paren> <colunmn nane list> <right paren>] AS
<tabl e subquery> { WTH NO DATA | W TH DATA }

An<as subquery cl ause> usedintabledefinition creates atable based ona<t abl e subquer y>. Thiskind
of table definition issimilar to aview definition. If W TH DATA is specified, then the new table will contain the rows
of datareturned by the <t abl e subquery>.

(CREATE TABLE t (a, b, c) AS (SELECT * FROM atable) W TH DATA

column definition

A column definition consists of a<col unm name> and in most cases a<dat a type> or <donai n nane>
as minimum. The other elements of <col urm defi ni ti on> are optional. Each <col unm nane> in atable
isunique.

<colum definition> ::= <columm nane> [<data type or domain name>] [<default
clause> | <identity columm specification> | <generation clause>] [<columm
constraint definition> ..] [<collate clause>]

<data type or domain name> ::= <data type> | <domai n name>

<colum constraint definition> ::= [<constraint name definition>] <colum

constraint> [<constraint characteristics>]

<colum constraint> ::= NOT NULL | <unique specification> | <references speci-
fication> | <check constraint definition>

<identity colum specification>::= GENERATED { ALWAYS | BY DEFAULT } AS | DENTI TY
[<left paren> <conmobn sequence generator options> <right paren>]

<generation cl ause> ::= GENERATED ALWAYS AS <generati on expressi on>
<generation expression> ::= <left paren> <val ue expression> <right paren>
The<i dentity colum specificati on> can be specified for only asingle column of the table.

A <columm constraint definition>isashortcut fora<table constraint definition> A
constraint that is defined in thisway is automatically turned into atable constraint. A nameis automatically generated
for the constraint and assigned to it.

The<identity colum specification>isusedfor special columns which represent values based on un-
named sequence generators. It is possible to insert arow into the able without specifying a value for the column. The
value is then generated by the sequence generators according to its rules. An identity column may or may not be the
primary key. Example below:

CREATE TABLE t (id | NTEGER GENERATED ALWAYS AS | DENTI TY(START W TH 100), name VARCHAR(20) PRI MARY
KEY,)

The<gener ati on cl ause> isused for special columnswhich represent values based on the values held in other
columnsin the same row. The <val ue expr essi on> must reference only other, non-generated, columns of the
table in the same row. Therefore, any function used in the expression may not access SQL-data, and no <query

48

HyperS@L Schemas and Database Objects

expr essi on> isalowed. When <gener ati on cl ause>isused, <dat a type>or<domai n nane> may
be omitted.

A generated column can be part of aforeign key or unique constraints or a column of an index. This capability isthe
main reason for using generated columns. A generated column may contain aformulathat computes a value based on
the values of other columns. Fast searches of the computed value can be performed when an index is declared on the
generated column. Or the computed values can be declared to be unique, using a UNIQUE constraint on the table.

When arow isinserted into atable, or an existing row is updated, no value except DEFAULT can be specified for a
generated column. In the example below, datais inserted into the non-generated columns and the generated column
will contain 'Felix the Cat' or 'Pink Panther'.

CREATE TABLE t (id | NTEGER PRI MARY KEY,
firstnane VARCHAR(20),
| ast name VARCHAR(20) ,
ful | nane VARCHAR(40) GENERATED ALWAYS AS (firstnanme || ' ' || lastname))
INSERT INTOt (id, firstnane, |astname) VALUES (1, 'Felix', '"the Cat')
INSERT INTOt (id, firstnane, |astnanme, fullnane) VALUES (2, 'Pink', 'Panther', DEFAULT)

DEFAULT
default clause

A default clause can be used if GENERATED is not specified. If acolumn hasa<def ault cl ause>thenitis
possible to insert arow into the table without specifying a value for the column.

<default clause> ::= DEFAULT <default option>

<default option>::=<literal>| <datetinme value function>| USER| CURRENT_USER
| CURRENT_ROLE | SESSI ON _USER | SYSTEM USER | CURRENT_CATALOG | CURRENT_SCHEMA
| CURRENT_PATH | NULL

Thetype of the<def aul t opt i on> must match the type of the column.
CONSTRAINT

constraint name and characteristics

<constraint nane definition> ::= CONSTRAI NT <constrai nt nane>

<constraint characteristics> ::= <constraint check tine> [[NOT | DEFERRABLE
[<constraint check time> 1]]

<constraint check time> ::= INTIALLY DEFERRED | | N TIALLY | MVEDI ATE

Specify the name of a constraint and its characteristics. By default the constraint is NOT DEFERRABLE and | NI -
TIALLY | MVEDI ATE. This means the constraint is enforced as soon as a data change statement is executed. If
I NI TI ALLY DEFERRED s specified, then the constraint is enforced when the session commits. The characteristics
must be compatible. The constraint check time can be changed temporarily for an SQL session. HyperSQL does not
support deferring constraint enforcement. This feature of the SQL Standard has been criticised because it alows a
session to read uncommitted data that violates database integrity constraints but has not yet been checked.

CONSTRAINT
table constraint definition

<table constraint definition> ::= [<constraint name definition>] <table con-
straint> [<constraint characteristics>]

49

HyperS@L Schemas and Database Objects

<tabl e constraint> ::= <uni que constraint definition>| <referential constraint
definition> | <check constraint definition>

Three kinds of constraint can be defined on a table: UNIQUE (including PRIMARY KEY), FOREIGN KEY and
CHECK. Each kind has its own rules to limit the values that can be specified for different columns in each row of
the table.

UNIQUE
unique constraint definition

<uni que constraint definition> ::= <unique specification> <left paren> <uni que
colum list> <right paren> | UN QUE (VALUE)

<uni que specification> ::= UNIQUE | PRI MARY KEY
<uni que colum list> ::= <colum nane |ist>

A unique constraint is specified on a single column or on multiple columns. On each set of columns taken together,
only one UNIQUE constraint can be specified. Each column of a PRIMARY KEY constraint has an implicit NOT
NULL constraint.

If UNI QUE(VALUE) is specified, the constraint created on all columns of the table.
FOREIGN KEY
referential constraint definition

<referential constraint definition> ::= FOREIGN KEY <l eft paren> <referencing
col ums> <right paren> <references specification>

<references specification>::= REFERENCES <ref erenced tabl e and col utms> [MATCH
<match type>] [<referential triggered action>]

<match type> ::= FULL | PARTIAL | SIMPLE
<referencing colums> ::= <reference columm |ist>
<referenced tabl e and col ums> ::= <table name> [<left paren> <reference col um

list> <right paren>]
<reference colum list> ::= <colum nane |ist>

<referential triggered action> ::= <update rule> [<delete rule>] | <delete
rule> [<update rule>]

<update rule> ::= ON UPDATE <referential action>
<delete rule> ::= ON DELETE <referential action>
<referential action> ::= CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTI ON

A referential constraint allows links to be established between the rows of two tables. The specified list of <r ef er -

enci ng col utms> corresponds one by one to the columns of the specified list of <r ef er enced col uims>
in another table (or sometimes in the same table). For each row in the table, a row must exist in the referenced table
with equivalent values in the two column lists. There must exist a single unique constraint in the referenced table on
al the<r ef erenced col utms>.

50

HyperS@L Schemas and Database Objects

The[MATCH match type] clauseis optional and has an effect only on multi-column foreign keys and
only on rows containing at least aNULL in one of the <r ef er enci ng col utms>. If the clause is not specified,
MATCH SIMPLE isthe default. If MATCH SI MPLE is specified, then any NULL means the row can exist (without
a corresponding row in the referenced table). If MATCH FULL is specified then either al the column values must be
NULL or none of them. MATCH PARTI AL alows any NULL but the non NULL values must match those of arow
in the referenced table. HyperSQL does not support MATCH PARTI AL.

Referential actions are specified with ON UPDATE and ON DELETE clauses. These actions take placewhen arow in
the referenced table (the parent table) has referencing rows in the referencing table and it is deleted or modified with
any SQL statement. The default isNO ACTION. This meansthe SQL statement that causesthe DELETE or UPDATE
isterminated with an exception. The RESTRICT option is similar and works exactly the same without deferrable con-
straints (which are not allowed by HyperSQL). The other three options, CASCADE, SET NULL and SET DEFAULT
all alow the DELETE or UPDATE statement to complete. With DELETE statements the CASCADE option results
in the referencing rows to be deleted. With UPDATE statements, the changes to the values of the referenced columns
are copied to the referencing rows. With both DELETE or UPDATE statement, the SET NULL option results in the
columns of the referencing rows to be set to NULL. Similarly, the SET DEFAULT option results in the columns of
the referencing rows to be set to their default values.

CHECK
check constraint definition

<check constraint definition> ::= CHECK <l eft paren> <search condition> <right
par en>

A CHECK constraint can exist for aTABLE or foraDOMAIN. The<sear ch condi ti on> evaluatesto an SQL
BOOLEAN value for each row of the table. Within the <sear ch condi ti on> al columns of the table row can
be referenced. For all rows of the table, the <sear ch condi t i on> evaluatesto TRUE or UNKNOWN. When a
new row is inserted, or an existing row is updated, the <sear ch condi ti on> isevaluated and if it is FALSE,
the insert or update fails.

A CHECK constraint foraDOMAIN issimilar. Inits<sear ch condi ti on>,thetermVALUE isused to represents
the value to which the DOMAIN applies.

(CREATE TABLE t (a VARCHAR(20) CHECK (a IS NOT NULL AND CHARACTER LENGTH(a) > 2)) |

The search condition of aCHECK constraint cannot contain any function that isnot deterministic. A check constraintis
adataintegrity constraint, therefore it must hold with respect to the rest of the datain the database. It cannot use values
that aretemporal or ephemeral. For example CURRENT _USER isafunction that returnsdifferent values depending on
who is using the database, or CURRENT_DATE changes day-to-day. Some temporal expressions are retrospectively
deterministic and are allowed in check constraints. For example, (CHECK VALUE < CURRENT_DATE) is valid,
because CURRENT_DATE will not move backwards in time, but (CHECK VALUE > CURRENT_DATE) is not
acceptable.

If you want to enforce the condition that a date value that isinserted into the database belongs to the future (at the time
of insertion), or any similar constraint, then use a TRIGGER with the desired condition.

SET TABLE writeability
set table write property (Hyper SQL)

<set table read only statenment> ::= SET TABLE <table nane> { READ ONLY | READ
WRI TE }

Set thewriteability property of atable. Tablesarewritable by default. This statement can be used to change the property
between READ ONLY and READ WRI TE. Thisisafeature of HyperSQL.

51

HyperS@L Schemas and Database Objects

SET TABLE SOURCE

set table source statement

<set tabl e source statenment> ::= SET TABLE <t abl e name> SOURCE <fil e and opti ons>
[DESC]
<file and options>::= <doubl equote> <file path> [<sem col on> <property>...]

<doubl equot e>

Set the text source for atext table. This statement cannot be used for tables that are not defined as TEXT TABLE.

Supported Properties

quoted ={ true | false} default istrue. If false, treats double quotes as normal characters

all_quoted ={ true | false} default isfalse. If true, adds double quotes around all fields.

encoding = <encoding name> character encoding for text and character fields, for example, encoding=UTF-8
ignore_first ={ true | false} default isfalse. If trueignoresthefirst line of thefile

cache scale= <numeric value> exponent to calculate rows of the text file in cache. Default is 8, equivalent to

nearly 800 rows

cache size scale = <numeric exponent to calcul ate average size of each row in cache. Defaultis 8, equivalent
value>r to 256 bytes per row.

fs = <unquoted character> field separator

VS = <unquoted character> varchar separator

Special indicatorsfor Hyper SQL Text Table separators
\semi semicolon

\quote guote

\space space character

\apos apostrophe

\n newline - Used as an end anchor (like $ in regular expressions)
\r carriage return

\t tab

\ backslash

\ut#ttt aUnicode character specified in hexadecimal

In the example below, the text source of the table is set to "myfile", the field separator to the pipe symbol, and the
long varchar separator to the tilde symbol.

‘ SET TABLE nytabl e SOURCE 'nyfile;fs=|;vs=;|vs=~ ‘

52

HyperS@L Schemas and Database Objects

Only auser with the DBA role can execute this statement.
SET TABLE SOURCE HEADER
set table source header statement

<set table source header statenent> ::= SET TABLE <table nanme> SOURCE HEADER
<header string>

Set the header for the text source for atext table. If this command is used, the <header stri ng> isused asthe
first line of the source file of the text table. Thisline is not part of the table data. Only a user with the DBA role can
execute this statement.

SET TABLE SOURCE on-off
set table source on-off statement
<set tabl e source on-of f statenment> ::= SET TABLE <t abl e nane> SOURCE { ON| OFF }

Attach or detach atext table from its text source. This command does not change the properties or the name of thefile
that is the source of atext table. When OFF is specified, the command detaches the table from its source and closes
the file for the source. In this state, it is not possible to read or write to the table. This allows the user to replace the
file with a different file, or delete it. When ON is specified, the source file is read. Only a user with the DBA role
can execute this statement

ALTER TABLE
alter table statement
<alter table statenment> ::= ALTER TABLE <t abl e nane> <alter table action>

<alter table action> ::= <add columm definition> | <alter columm definition>
| <drop colum definition> | <add table constraint definition> | <drop table
constraint definition>

Change the definition of atable. Specific types of this statement are covered below.
ADD COLUMN
add column definition

<add colum definition> ::= ADD [COLUWN] <colum definition> [BEFORE <ot her
col um nane> |

Add acolumnto an existing table. The<col umm def i ni ti on> isspecified the sameway asitisusedin<t abl e
defini ti on>. HyperSQL alowstheuseof [BEFORE <ot her col utmm name>] to specify at which position
the new column is added to the table.

If the table containsrows, the new column must havea<def aul t cl ause> or use one of theforms of GENERAT-
ED. The column valuesfor each row isthen filled with theresult of the<def aul t ¢l ause> or the generated value.

ALTER COLUMN
alter column definition

<alter colum definition> ::= ALTER [COLUW] <colum nane> <alter colum
action>

53

HyperS@L Schemas and Database Objects

<alter columm action> ::= <set colum default clause> | <drop columm default
clause>| <alter colum data type clause>| <alter identity columm specification>
| <alter columm nullability> | <alter colum nane>

Change a column and its definition. Specific types of this statement are covered below. See also the RENAME state-
ment above.

SET DEFAULT

set column default clause

<set columm default clause> ::= SET <default cl ause>

Set the default clause for a column. This can be used if the column is not defined as GENERATED.
DROP DEFAULT

drop column default clause

<drop columm default clause> ::= DROP DEFAULT

Drop the default clause from a column.

SET DATA TYPE

alter column data type clause

<alter colum data type clause> ::= SET DATA TYPE <data type>

Change the declared type of a column. The (proposed) SQL Standard allows only changes to type properties such as
maximum length, precision, or scale, and only changes that cause the property to enlarge. HyperSQL allows changing
the typeif all the existing values can be cast into the new type without string truncation or loss of significant digits.

alter identity column
alter identity column specification
<alter identity columm specification> ::= <alter identity columm option>...

<alter identity colum option> ::= <alter sequence generator restart option> |
SET <basi ¢ sequence generator option>

Changethe propertiesof anidentity column. Thiscommand issimilar to the commands used for changing the properties
of named SEQUENCE objects discussed in this section.

SET NULL

alter column nullability

<alter colum nullability> ::= SET NULL

Removes a NOT NULL constraint from a column. This option is specific to HyperSQL
DROP COLUMN

drop column definition

<drop columm definition> ::= DROP [COLUW] <col um nane> <drop behavi or>

54

HyperS@L Schemas and Database Objects

Destroy a column of a base table. The <dr op behavi or > is either RESTRI CT or CASCADE. If the column is
referenced in a table constraint that references other columns as well as this column, or if the column is referenced
in a VIEW, or the column is referenced in a TRIGGER, then the statement will fail if RESTRI CT is specified. If
CASCADE is specified, then any CONSTRAINT, VIEW or TRIGGER object that references the column is dropped
with a cascading effect.

ADD CONSTRAINT
add table constraint definition
<add table constraint definition> ::= ADD <table constraint definition>

Add aconstraint to atable. The existing rows of the table must conform to the added constraint, otherwisethe statement
will not succeed.

DROP CONSTRAINT
drop table constraint definition

<drop table constraint definition> ::= DROP CONSTRAI NT <constrai nt name> <drop
behavi or >

Destroy a constraint on a table. The <dr op behavi or > has an effect only on UNIQUE and PRIMARY KEY
congtraints. If such a constraint is referenced by a FOREIGN KEY constraint, the FOREIGN KEY constraint will be
dropped if CASCADE is specified. If the columns of such a constraint are used in a GROUP BY clause in the query
expression of aVIEW or another kind of schemaobject, and afunctional dependency relationship exists between these
columns and the other columnsin that query expression, then the VIEW or other schema object will be dropped when
CASCADE is specified.

DROP TABLE
drop table statement

<drop table statenment> ::= DROP TABLE [|IF EXISTS] <table name> [| F EXI STS]
<drop behavi or >

Destroy atable. The default drop behaviour is RESTRICT and will cause the statement to fail if thereis any view or
foreign key constraint that references the table. If <dr op behavi or > is CASCADE, it causes all schema objects
that reference the table to drop. Referencing views are dropped. In the case of foreign key constraints that reference
the table, the constraint is dropped, rather than the TABLE or DOMAIN that containsiit.

View Creation and Manipulation
CREATE VIEW
view definition

<viewdefinition>::= CREATE[RECURSI VE] VI EW<tabl e name> <vi ew speci fi cati on>
AS <query expression> [WTH [CASCADED | LOCAL] CHECK OPTI ON]

<view specification> ::= [<left paren> <view colum list> <right paren>]
<view colum list> ::= <colum nane |ist>

Define aview. The <query expressi on> isa SELECT or similar statement. The <vi ew columm |i st >
is the list of unique names for the columns of the view. The number of columnsin the <vi ew colum |[i st >

55

HyperS@L Schemas and Database Objects

must match the number of columns returned by the <query expressi on>. If <vi ew col umm | i st >isnot
specified, then the columns of the <query expr essi on> should have unique names and are used as the names
of the view column.

Some views are updatable. As covered elsawhere, an updatable view is based on a single table or updatable view.
For updatable views, the optional CHECK OPTI ON clause can be specified. If this option is specified, then if arow
of the view is updated or a new row is inserted into the view, then it should contain such values that the row would
be included in the view after the change. If W TH CASCADED CHECK OPTI ONis specified, then if the <query
expr essi on> of the view references another view, then the search condition of the underlying view should also be
satisfied by the update or insert operation.

More on recursive...
DROP VIEW
drop view statement

<drop view statement> ::= DROP VIEW][IF EXISTS] <table name> [|IF EXI STS]
<drop behavi or>

Destroy aview. The<dr op behavi or > issimilar to dropping atable.
ALTER VIEW
alter view statement

<alter view statenent> ::= ALTER VIEW <table name> <view specification> AS
<query expression> [WTH [CASCADED | LOCAL] CHECK OPTI ON]

Alter aview. The statement is otherwise identical to CREATE VIEW. The new definition replaces the old. If there

are database objects such as routines or views that reference the view, then these objects are recompiled with the new
view definition. If the new definition is not compatible, the statement fails.

Domain Creation and Manipulation

CREATE DOMAIN

domain definition

<domai n definition> ::= CREATE DOVAI N <domain nane> [AS | <predefined type>
[<default clause>] [<domain constraint>. ..] [<collate clause>]
<domai n constraint> ::= [<constraint nane definition>] <check constraint

definition> [<constraint characteristics>]

Define adomain. Although a DOMAIN is not strictly atypein the SQL Standard, it can be informally considered as
atype. A DOMAIN isbhased on a<pr edef i ned t ype>, which isabase type defined by the Standard. It can have
a<defaul t cl ause>, similar to acolumn default clause. It can also have one or more CHECK constraints which
limit the values that can be assigned to a column or variable that has the DOMAIN asits type.

CREATE DOMAI N val i d_string AS VARCHAR(20) DEFAULT ' NO VALUE CHECK (value IS NOT NULL AND
CHARACTER_LENGTH(val ue) > 2)

ALTER DOMAIN

alter domain statement

56

HyperS@L Schemas and Database Objects

<al ter domain statenent> ::= ALTER DOMAI N <domai n nane> <alter domain action>

<alter donain action> ::= <set domain default clause> | <drop donmin default
clause> | <add domain constraint definition> | <drop domain constraint defi-
nition>

Change adomain and its definition.

SET DEFAULT

set domain default clause

<set dommin default clause> ::= SET <default cl ause>

Set the default value in adomain.

DROP DEFAULT

drop domain default clause

<drop domai n default clause> ::= DROP DEFAULT

Remove the default clause of a domain.

ADD CONSTRAINT

add domain constraint definition

<add donmain constraint definition> ::= ADD <donai n constraint>
Add a constraint to adomain.

DROP CONSTRAINT

drop domain constraint definition

<drop domai n constraint definition> ::= DROP CONSTRAI NT <constrai nt nane>

Destroy aconstraint on adomain. If the<dr op behavi or > is CASCADE, and the constraint isa UNIQUE constraint
which is referenced by a FOREIGN KEY constraint on another table, then the FOREIGN KEY constraint is also
dropped.

DROP DOMAIN
drop domain statement
<drop dommi n statenment> ::= DROP DOVAI N <donmai n name> <drop behavi or >

Destroy a domain. If <dr op behavi or > is CASCADE, it works differently from most other objects. If a table
features a column of the specified DOMAIN, the column survives and inherits the DEFAULT CLAUSE, and the
CHECK CONSTRAINT of the DOMAIN.

Trigger Creation
CREATE TRIGGER

trigger definition

57

HyperS@L Schemas and Database Objects

<trigger definition> ::= CREATE TRIGGER <trigger nane> <trigger action tine>
<trigger event> ON <table nanme> [REFERENCI NG <transition table or variable
list>] <triggered action>

<trigger action tinme> ::= BEFORE | AFTER | | NSTEAD OF

<trigger event> ::= |INSERT | DELETE | UPDATE [OF <trigger colum list>]
<trigger colum list> ::= <colum nanme |ist>

<triggered action> ::= [FOR EACH { ROW | STATEMENT }] [<triggered when
clause>] <triggered SQ statenent>

<triggered when clause> ::= WHEN <l eft paren> <search condition> <right paren>
<triggered SQL statement> ::= <SQ. procedure statenent> | BEG N ATOM C { <SQL
procedure statenent> <semicolon> }... END | [QUEUE <integer literal>] [NOMIT]
CALL <HSQLDB trigger class FQ\W>

<transition table or variable list> ::= <transition table or variable>. ..
<transition table or variable> ::= OLD[ROWN] [AS] <old transition variable

nane> | NEW[ROW] [AS] <new transition variable name> | O.D TABLE [AS]
<old transition table name> | NEWTABLE [AS] <new transition table nane>

<old transition table name> ::= <transition table nane>
<new transition table nane> ::= <transition table nane>
<transition table nane> ::= <identifier>

<old transition variable nanme> ::= <correl ati on nanme>
<new transition variable name> ::= <correl ati on nane>

Trigger definitionisarelatively complex statement. The combinationof <t ri gger action tine>and<tri g-
ger event >determinesthetype of thetrigger. Examplesinclude BEFORE DELETE, AFTER UPDATE, INSTEAD
OF INSERT. If theoptional [OF <trigger colum |ist>] isspecified for an UPDATE trigger, then the
trigger isactivated only if one of the columnsthat isinthe<t ri gger col um 1 i st >isspecifiedinthe UPDATE
statement that activates the trigger.

If atrigger is FOR EACH ROW which is the default option, then the trigger is activated for each row of the table
that is affected by the execution of an SQL statement. Otherwise, it is activated once only per statement execution. In
the first case, there is a before and after state for each row. For UPDATE triggers, both before and after states exist,
representing the row before the update, and after the update. For DELETE, triggers, there is only a before state. For
INSERT triggers, thereis only an after state. If atrigger isFOR EACH STATEMENT, then atransient tableis created
containing al the rows for the before state and another transient table is created for the after state.

The[REFERENCI NG <transition tabl e or vari abl e>] isusedto giveanameto the before and after
datarow or table. This name can be referenced inthe<SQL pr ocedur e st at enent > to access the data.

Theoptiona <t ri gger ed when cl ause> isasearch condition, similar to the search condition of aDELETE or
UPDATE statement. If the search condition is not TRUE for arow, then the trigger is not activated for that row.

The<SQL procedure statenment >islimited to INSERT, DELETE, UPDATE and MERGE statements.

The<HSQLDB trigger class FQ\>isaddimitedidentifier that contains the fully qualified name of a Java
classthat implementstheor g. hsql db. Tri gger interface.

58

HyperS@L Schemas and Database Objects

Early releases of HyperSQL version 2.0 do not allow the use of OLD TABLE or NEW TABLE in statement level
trigger definitions.

DROP TRIGGER
drop trigger statement
<drop trigger statenent> ::= DROP TRI GCER <trigger name>

Destroy atrigger.

Routine Creation

schema routine

NL-invoked routine

<SQ@.-i nvoked routine> ::= <schema routine>

<schema routine> ::= <schema procedure> | <schema function>

<schema procedure> ::= CREATE <SQL-i nvoked procedure>

<schema function> ::= CREATE <SQ.-i nvoked functi on>

<SQ@.-i nvoked procedure> ::= PROCEDURE <schema qualified routine nane> <SQ

paraneter declaration |list> <routine characteristics> <routine body>

<SQ.-i nvoked function> ::= { <function specification> | <nethod specification
designator> } <routine body>

<SQ. paraneter declaration list> ::= <left paren> [<SQ paraneter declaration>
[{ <comma> <SQL paraneter declaration>}...]] <right paren>
<SQ. paraneter declaration> ::= [<paraneter node>] [<SQ paranmeter nane>]

<parameter type> [RESULT]

<paraneter node> ::= IN| OUT | | NOUT
<paraneter type> ::= <data type>
<function specification> ::= FUNCTI ON <schema qualified routine name> <SQ. pa-

rameter declaration |list> <returns clause> <routine characteristics>[<dispatch
cl ause>]

<met hod specification designator> ::= SPECI FIC METHOD <specific method nanme>
| [INSTANCE | STATIC | CONSTRUCTOR] METHOD <method nanme> <SQ. paraneter
declaration list> [<returns clause>] FOR <schema-resol ved user-defined type
nanme>

<routine characteristics> ::=[<routine characteristic>...]

<routine characteristic> ::= <language clause> | <paraneter style clause> |
SPECI FI C <specific name> | <deterministic characteristic> | <SQ.-data access
indication> | <null-call clause> | <returned result sets characteristic> |

<savepoi nt |evel indication>

59

HyperS@L Schemas and Database Objects

<savepoi nt level indication> ::= NEW SAVEPO NT LEVEL | OLD SAVEPO NT LEVEL

<returned result sets characteristic> ::= DYNAM C RESULT SETS <nmaxi num r et ur ned
result sets>

<paraneter style clause> ::= PARAVMETER STYLE <paraneter style>

<di spatch cl ause> ::= STATI C DI SPATCH

<returns clause> ::= RETURNS <returns type>

<returns type> ::= <returns data type> [<result cast>] | <returns table type>
<returns table type> ::= TABLE <table function colum I[ist>

<table function colum list> ::= <left paren> <table function colum Iist
element> [{ <comma> <table function columm list element> }...] <right paren>
<table function columm Ilist element> ::= <columm nane> <data type>

<result cast> ::.= CAST FROM <result cast fromtype>

<result cast fromtype> ::= <data type> [<locator indication>]

<returns data type> ::= <data type> [<locator indication>]

<routine body> ::= <SQ routine spec> | <external body reference>

<SQ. routine spec> ::=[<rights clause>] <SQ routine body>

<rights clause> ::= SQL SECURITY | NVOKER | SQ. SECURI TY DEFI NER

<SQ@. routine body> ::= <SQ. procedure statenent>

<external body reference> ::= EXTERNAL [NAME <external routine name>] [<pa-

raneter style clause> |

<parameter style> ::= SQ | GENERAL

<determnistic characteristic> ::= DETERM NI STIC | NOT DETERM NI STI C
<SQ.-data access indication> ::= NO SQL | CONTAINS SQ. | READS SQ. DATA |
MODI FI ES SQL DATA

<nul | -call clause> ::= RETURNS NULL ON NULL I NPUT | CALLED ON NULL I NPUT

<maxi mumreturned result sets> ::= <unsigned integer>

Define an SQL-invoked routine.
ALTER routine
alter routine statement

<alter routine statenment> ::= ALTER <specific routine designator> <alter routine
characteristics> <alter routine behavior>

<alter routine characteristics> ::= <alter routine characteristic>..

60

HyperS@L Schemas and Database Objects

<alter routine characteristic> ::= <language cl ause> | <paraneter style cl ause>
| <SQL-data access indication> | <null-call clause> | <returned result sets
characteristic> | NAME <external routine nanme>

<al ter routine behavior> ::= RESTRI CT

Alter a characteristic of an SQL-invoked routine. Early releases of HyperSQL 2.0 may not support this statement.
DROP

drop routine statement

<drop routine statenment> ::= DROP <specific routine designator> <drop behavi or>

Destroy an SQL-invoked routine.

Sequence Creation

CREATE SEQUENCE
sequence generator definition

<sequence generator definition> ::= CREATE SEQUENCE <sequence generator nane>
[<sequence generator options>]

<sequence generator options> ::= <sequence generator option> ..

<sequence generator option> ::= <sequence generator data type option> | <commobn
sequence generator options>

<commoDn sequence generator options> ::= <comobDn sequence generator option> ...

<comoDn sequence generator option> ::= <sequence generator start with option>
| <basic sequence generator option>

<basi ¢ sequence generator option> ::= <sequence generator increnment by option>
| <sequence generator maxval ue option> | <sequence generator mnvalue option>
| <sequence generator cycle option>

<sequence generator data type option> ::= AS <data type>

<sequence generator start with option> ::= START W TH <sequence generator start
val ue>

<sequence generator start value> ::= <signed nuneric literal >

<sequence generator increnment by option> ::= | NCREMENT BY <sequence gener ator
i ncrement >

<sequence generator increnent> ::= <signed nuneric literal >

<sequence gener at or maxval ue opti on> :: = MAXVALUE <sequence gener at or max val ue>
| NO MAXVALUE

<sequence generator nax value> ::= <signed nuneric literal >

<sequence generator m nval ue opti on> ::= M NVALUE <sequence generator m n val ue>
| NO M NVALUE

61

HyperS@L Schemas and Database Objects

<sequence generator nmn value> ::= <signed nuneric literal >
<sequence generator cycle option> ::= CYCLE | NO CYCLE

Define anamed sequence generator. A SEQUENCE object generates a sequence of integers according to the specified
rules. The simple definition without the options defines a sequence of numbersin INTEGER type starting at 1 and
incrementing by 1. By default the CYCLE property is set and the minimum and maximum limits are the minimum and
maximum limits of the type of returned values. There are self-explanatory options for changing various properties of
the sequence. The MAXVALUE and M NVALUE specify the upper and lower limits. If CYCLE is specified, after the
seguence returns the highest or lowest value in range, the next value will respectively be the lowest or highest valuein
range. If NO CYCLE is specified, the use of the sequence generator resultsin an error once the limit has been reached.

The integer types. SMALLINT, INTEGER, BIGINT, DECIMAL and NUMERIC can be used as the type of the se-
guence. DECIMAL and NUMERIC types must have a scale of 0 and a precision not exceeding 18.

ALTER SEQUENCE
alter sequence generator statement

<al ter sequence generator statenent> ::= ALTER SEQUENCE <sequence generator
name> <alter sequence generator options>

<al ter sequence generator options> ::= <alter sequence generator option>...

<al ter sequence generator option> ::= <alter sequence generator restart option>
| <basic sequence generator option>

<al ter sequence generator restart option> ::= RESTART [W TH <sequence gener at or
restart val ue>]

<sequence generator restart value> ::= <signed nuneric literal >

Change the definition of a named sequence generator. The same options that are used in the definition of the SE-
QUENCE can be used to alter it. The exception is the option for the start value which is RESTART W TH for the
ALTER SEQUENCE statement..

DROP SEQUENCE
drop sequence generator statement

<drop sequence generator statement> ::= DROP SEQUENCE [|IF EXISTS] <sequence
generator nane> [|F EXISTS] <drop behavior>

Destroy an external sequence generator. If the <dr op behavi or > is CASCADE, then all objects that reference the
sequence are dropped. These abjects can be VIEW, ROUTINE or TRIGGER objects.

SQL Procedure Statement

SQL procedure statement
QL procedure statement

Thedefinition of CREATE TRIGGER and CREATE PROCEDURE statementsrefersto <SQL procedure statement>.
The definition of this element is given below. However, only a subset of these statements are allowed in trigger or
routine definition.

<SQ. procedure statenent> ::= <SQL executabl e statenent>

62

HyperS@L Schemas and Database Objects

<SQL executable statenent> ::= <SQL schema statenent> | <SQ. data statenment>
| <SQ control statement> | <SQ transaction statement> | <SQ@ connection
statenment> | <SQ session statenment>| <SQL di agnostics statenment> | <SQ dynam c
st at enent >

<SQL schenma statement> ::= <SQL schena definition statement> | <SQ@ schenmn
mani pul ati on st at enent >

<SQL schema definition statement> ::= <schena definition>| <table definition> |
<viewdefinition>| <SQ.-invoked routine>| <grant statement>| <rol e definition>
| <dommin definition> | <character set definition> | <collation definition> |
<transliteration definition> | <assertion definition> | <trigger definition> |
<user-defined type definition>| <user-defined cast definition>| <user-defined
ordering definition>| <transformdefinition> | <sequence generator definition>

<SQL scherma mani pul ation statenent> ::= <drop schenma statenent> | <alter table
statenent> | <drop table statement> | <drop view statenment> | <alter routine
statement> | <drop routine statement> | <drop user-defined cast statenent> |
<revoke statenent> | <drop role statement> | <alter domain statement> | <drop
domai n statenment> | <drop character set statenent> | <drop collation statenment>
| <drop transliteration statement> | <drop assertion statenent> | <drop trigger
statenent> | <alter type statement> | <drop data type statenent> | <alter
sequence generator statenment> | <drop sequence generator statenent>

Other Schema Object Creation

CREATE INDEX
create index statement

<create index statenment> ::= CREATE | NDEX <i ndex nanme> ON <table name> <l eft
paren> {<col um nanme> [ASC | DESC]}, ... <left paren>

Creates an index on a group of columns of atable. The optional [ASC | DESC] specifiesif the column isindexed in
the ascending or descending order, but has no effect on how the index is created (it is allowed for compatibility with
other database engines). HyperSQL can use all indexes in ascending or descending order as needed.

DROP INDEX

drop index statement

<drop index statenent> ::= DROP INDEX [IF EXISTS] <index name> [|F EXI STS]
Destroy an index.

CREATETYPE

user-defined type definition

<user-defined type definition> ::= CREATE TYPE <user-defined type body>

<user-defined type body> ::= <schema-resolved user-defined type name> [AS
<representation>]

<representation> ::= <predefined type>

Define a user-defined type. Currently only simple distinct types can be defined without further attributes.

63

HyperS@L Schemas and Database Objects

CREATE CAST
user-defined cast definition

<user-defined cast definition> ::= CREATE CAST <l eft paren> <source data type>
AS <target data type> <right paren> WTH <cast function> [AS ASSI GNVENT]

<cast function> ::= <specific routine designator>
<source data type> ::= <data type>
<target data type> ::= <data type>

Define a user-defined cast. This feature may be supported in a future versions of HyperSQL.
DROP CAST
drop user-defined cast statement

<drop user-defined cast statenent> ::= DROP CAST <l eft paren> <source data type>
AS <target data type> <right paren> <drop behavi or>

Destroy a user-defined cast. This feature may be supported in a future versions of HyperSQL.
CREATE CHARACTER SET
character set definition

<character set definition> ::= CREATE CHARACTER SET <character set nane> [AS]
<character set source> [<collate clause>]

<character set source> ::= CGET <character set specification>

Define a character set. A new CHARACTER SET is based on an existing CHARACTER SET. The optional <col -
| at e cl ause> specifiesthe collation to be used, otherwise the collation is inherited from the default collation for
the source CHARACTER SET.

DROP CHARACTER SET

drop character set statement

<drop character set statenent> ::= DROP CHARACTER SET <character set nane>

Destroy a character set. If the character set name is referenced in any database object, the command fails. Note that
CASCADE or RESTRI CT cannot be specified for this command.

CREATE COLLATION
collation definition

<col l ation definition> ::= CREATE COLLATI ON <col | ati on nanme> FOR <character set
speci fication> FROM <exi sting collation nane> [<pad characteristic>]

<existing collation nane> ::= <collation nane>

<pad characteristic> ::= NO PAD | PAD SPACE

HyperS@L Schemas and Database Objects

Define a collation. A new collation is based on an existing COLLATION and applies to an existing CHARACTER
SET.The<pad char act eri st i c> specifieswhether strings are padded with spaces for comparison. Thisfeature
may be supported in a future versions of HyperSQL.

DROP COLLATION
drop collation statement
<drop collation statenent> ::= DROP COLLATI ON <col |l ati on nane> <drop behavi or>

Destroy acollation. If the<dr op behavi or > is CASCADE, then all references to the collation revert to the default
collation that would be in force if the dropped collation was not specified. This feature may be supported in a future
versions of HyperSQL.

CREATE TRANSLATION
trandliteration definition

<transliteration definition> ::= CREATE TRANSLATI ON <transliterati on name> FOR
<source character set specification> TO <target character set specification>
FROM <transliteration source>

<source character set specification> ::= <character set specification>

<target character set specification> ::= <character set specification>
<transliteration source> ::= <existing transliteration nane> | <transliteration
routine>

<existing transliteration name> ::= <transliterati on nane>

<transliteration routine> ::= <specific routine designator>

Define a character trangliteration. This feature may be supported in afuture versions of HyperSQL.

DROP TRANSLATION

drop trandliteration statement

<drop transliteration statenent> ::= DROP TRANSLATION <transliteration name>
Destroy a character tranditeration. This feature may be supported in afuture versions of HyperSQL.

CREATE ASSERTION

assertion definition

<assertion definition>::= CREATE ASSERTI ON <constrai nt name> CHECK <| eft paren>
<search condition> <right paren> [<constraint characteristics>]

Specify an integrity constraint. This feature may be supported in a future versions of HyperSQL.
DROP ASSERTION
drop assertion statement

<drop assertion statenent> ::= DROP ASSERTI ON <constrai nt name> [<drop behav-
ior>]

65

HyperS@L Schemas and Database Objects

Destroy an assertion. This feature may be supported in a future versions of HyperSQL.

The Information Schema

The Information Schema is a special schemain each catalog. The SQL Standard defines a number of character sets
and domainsin this schema. In addition, all the implementation-defined collations belong to the Information Schema.

The SQL Standard defines many views in the Information Schema. These views show the properties of the database
objects that currently exist in the database. When a user accesses one these views, only the properties of database
objects that the user can access are included.

HyperSQL supportsall the views defined by the Standard, apart from afew viewsthat report on extended user-defined
types and other optional features of the Standard that are not supported by HyperSQL.

HyperSQL also adds some views to the Information Schema. These views are for features that are not reported in any
of the views defined by the Standard, or for use by JDBC DatabaseM etaData.

Predefined Character Sets, Collations and Domains

The SQL Standard defines a number of character sets and domains in the INFORMATION SCHEMA.
These domains are used in the INFORMATION SCHEMA views:

CARDINAL_NUMBER, YES OR_NO, CHARACTER_DATA, SQL_IDENTIFIER, TIME_STAMP

All available collations are in the INFORMATION SCHEMA.

Views in INFORMATION SCHEMA

The following views are defined by the SQL Standard:
ADMINISTRABLE_ROLE_AUTHORIZATIONS
APPLICABLE_ROLES

ASSERTIONS

AUTHORIZATIONS

CHARACTER_SETS

CHECK_CONSTRAINTS
CHECK_CONSTRAINT_ROUTINE_USAGE
COLLATIONS

COLUMNS

COLUMN_COLUMN_USAGE
COLUMN_DOMAIN_USAGE
COLUMN_PRIVILEGES

COLUMN_UDT_USAGE

66

HyperS@L

Schemas and Database Objects

CONSTRAINT_COLUMN_USAGE
CONSTRAINT_TABLE_USAGE
DATA_TYPE_PRIVILEGES

DOMAINS

DOMAIN_CONSTRAINTS
ENABLED_ROLES
INFORMATION_SCHEMA_CATALOG_NAME
KEY_COLUMN_USAGE

PARAMETERS
REFERENTIAL_CONSTRAINTS
ROLE_AUTHORIZATION_DESCRIPTORS
ROLE_COLUMN_GRANTS
ROLE_ROUTINE_GRANTS
ROLE_TABLE_GRANTS
ROLE_UDT_GRANTS
ROLE_USAGE_GRANTS
ROUTINE_COLUMN_USAGE
ROUTINE_JAR USAGE
ROUTINE_PRIVILEGES
ROUTINE_ROUTINE_USAGE
ROUTINE_SEQUENCE_USAGE
ROUTINE_TABLE_USAGE

ROUTINES

SCHEMATA

SEQUENCES

SQL_FEATURES
SQL_IMPLEMENTATION_INFO
SQL_PACKAGES

SQL_PARTS

SQL_SIZING

67

HyperS@L

Schemas and Database Objects

SQL_SIZING_PROFILES
TABLES
TABLE_CONSTRAINTS
TABLE_PRIVILEGES
TRANSLATIONS
TRIGGERED_UPDATE_COLUMNS
TRIGGERS
TRIGGER_COLUMN_USAGE
TRIGGER_ROUTINE_USAGE
TRIGGER_SEQUENCE_USAGE
TRIGGER TABLE_USAGE
USAGE_PRIVILEGES
USER_DEFINED_TYPES
VIEWS
VIEW_COLUMN_USAGE
VIEW_ROUTINE_USAGE

VIEW_TABLE_USAGE

The following views are specific to HyperSQL:

SYSTEM_BESTROWIDENTIFIER
SYSTEM_CACHEINFO
SYSTEM_COLUMNS
SYSTEM_COMMENTS
SYSTEM_CROSSREFERENCE
SYSTEM_INDEXINFO
SYSTEM_PRIMARYKEYS
SYSTEM_PROCEDURECOLUMNS
SYSTEM_PROCEDURES
SYSTEM_PROPERTIES
SYSTEM_SCHEMAS

SYSTEM_SEQUENCES

68

HyperS@L Schemas and Database Objects

SYSTEM_SESSIONINFO
SYSTEM_SESSIONS
SYSTEM_TABLES
SYSTEM_TABLETYPES
SYSTEM_TEXTTABLES
SYSTEM_TYPEINFO
SYSTEM_UDTS
SYSTEM_USERS

SYSTEM_VERSIONCOLUMNS

69

HyperS@L

Chapter 5. Text Tables

Text Tables as a Standard Feature of Hsqgldb
Bob Preston, The HSQL Development Group
Fred Toussi, The HSQL Development Group
$Revision: 3601 $

Copyright 2002-2010 Bob Preston and Fred Toussi. Permission is granted to distribute this document with-
out any alteration under the terms of the HSQLDB license. Additional permission is granted to the HSQL
Development Group to distribute this document with or without alterations under the terms of the HSQLDB
license.

Published $Date: 2010-05-31 20:17:47 -0400 (Mon, 31 May 2010) $

Overview

Text Table support for HSQLDB was originaly developed by Bob Preston independently from the Project. Subse-
guently Bob joined the Project and incorporated this feature into version 1.7.0, with a number of enhancements, espe-
cially the use of conventional SQL commands for specifying the files used for Text Tables.

Inanutshell, Text Tablesare CSV or other delimited filestreated as SQL tables. Any ordinary CSV or other delimited
file can be used. The full range of SQL queries can be performed on these files, including SELECT, INSERT, UP-
DATE and DELETE. Indexes and unique constraints can be set up, and foreign key constraints can be used to enforce
referential integrity between Text Tables themselves or with conventional tables.

The delimited file can be created by the engine, or an existing file can be used.

HyperSQL with Text Table support is the only comprehensive solution that employs the power of SQL and the uni-
versal reach of JDBC to handle data stored in text files.

The Implementation

Definition of Tables

Text Tables are defined similarly to conventional tables with the added TEXT keyword:

‘ CREATE TEXT TABLE <t abl enanme> (<col umm definition> [<constraint definition>]) ‘

Thetableis at first empty and cannot be written to. An additional SET command specifies the file and the separator
character that the Text table uses:

‘ SET TABLE <t abl enanme> SOURCE <quot ed_fil ename_and_opti ons> [DESC] ‘

Text Tables cannot be created in mem: (all-in-memory) databases (databases that have no script file).

Scope and Reassignment

» A Text table without afile assigned to it isREAD ONLY and EMPTY .
» Reassigning a Text Table definition to a new file has implicationsin the following areas:

1. Theuser isrequired to be an administrator.

70

Hypers L Text Tables

2. Existing transactions are committed at this point.

3. Congtraints, including foreign keys referencing this table, are kept intact. It is the responsibility of the adminis-
trator to ensure their integrity.

The new source file is scanned and indexes are built when it is assigned to the table. At this point any violation of
NOT NULL, UNIQUE or PRIMARY KEY constraints are caught and the assignment is aborted. However, foreign
key constraints are not checked at the time of assignment or reassignment of the sourcefile.

Null Values in Columns of Text Tables

» Empty fields are treated as NULL. These are fields where there is nothing or just spaces between the separators.

* Quoted empty strings are treated as empty strings.

Configuration

Thedefault field separator isacommay(,). A different field separator can be specified withinthe SET TABLE SOURCE

statement. For example, to change the field separator for the table mytable to a vertical bar, place the following in the
SET TABLE SOURCE statement, for example:

\ SET TABLE nytabl e SOURCE "nyfile;fs=|" |

Since HSQL DB treats CHAR and VARCHAR strings the same, the ability to assign a different separator to the latter
is provided. When a different separator is assigned to aVARCHAR, it will terminate any CSV field of that type. For
example, if thefirst field is CHAR, and the second field VARCHAR, and the separator fs has been defined as the pipe
() and vs asthe period (.) then the datain the CSV file for arow will ook like:

\ First field datal Second field data. Third field data \

This facility in effect offers an extra, special separator which can be used in addition to the global separator. The
following example shows how to change the default separator to the pipe (|), VARCHAR separator to the period (.)
within aSET TABLE SOURCE statement:

\ SET TABLE nytabl e SOURCE "nyfile;fs=|;vs=." |

HSQL DB also recognises the following special indicators for separators:

special indicatorsfor separators
\semi semicolon

\quote single-quote

\space space character

\apos apostrophe

\n newline - Used as an end anchor (like $ in regular expressions)
\r carriage return

\t tab

\ backslash

\ut#t aUnicode character specified in hexadecimal

71

Hypers L Text Tables

Furthermore, HSQLDB provides csv file support with three additional boolean options: i gnore_fi rst, quot ed
andal | _quot ed. Thei gnore_first option (default false) tells HSQLDB to ignore the first linein afile. This
option is used when the first line of the file contains column headings. Theal | _quot ed option (default false) tells
the program that it should use quotes around all character fields when writing to the source file. The quot ed option
(default true) uses quotes only when necessary to distinguish afield that contains the separator character. It can be set
to false to prevent the use of quoting altogether and treat quote characters as normal characters. These options may
be specified withinthe SET TABLE SOURCE statement:

‘ SET TABLE nytabl e SOURCE "nyfile;ignore_first=true;all_quoted=true" ‘

When the default optionsal | _quot ed=f al se and quot ed=t r ue areinforce, fieldsthat are written to aline of
the csv filewill be quoted only if they contain the separator or the quote character. The quote character isdoubled when
used inside a string. When al | _quot ed=f al se and quot ed=f al se the quote character is not doubled. With
thisoption, it is not possible to insert any string containing the separator into the table, asit would become impossible
to distinguish from a separator. While reading an existing data source file, the program treats each individua field
separately. It determines that a field is quoted only if the first character is the quote character. It interprets the rest
of thefield on this basis.

The character encoding for the sourcefileis ASCI | by default. To support UNICODE or source files prepared with
different encodings this can be changed to UTF- 8 or any other encoding. The default isencodi ng=ASCl | and the
option encodi ng=UTF- 8 or other supported encodings can be used.

Finally, HSQLDB providesthe ability to read atext fileasREAD ONLY, by placing the keyword "DESC" at the end
of the SET TABLE SOURCE statement:

| SET TABLE nytabl e SOURCE "nyfile" DESC |

Text table sourcefiles are cached in memory. The maximum number of rows of datathat arein memory at any timeis
controlled by thet ext db. cache_scal e property. The default valuefor t ext db. cache_scal e is10and can
be changed by setting the property in the .propertiesfile for the database. The number of rowsin memory is calculated
as 3* (2**scale), which trandates to 3072 rows for the default textdb.cache scale setting (10). The property can also
be set for individual text tables:

‘ SET TABLE nytabl e SOURCE "nyfile;ignore_first=true;all_quoted=true; cache_scal e=12" ‘

Disconnecting Text Tables

Text tables may be disconnected from their underlying data source, i.e. the text file.

Y ou can explicitly disconnect a text table from its file by issuing the following statement:

\ SET TABLE myt abl e SOURCE OFF \

Subsequently, nmyt abl e will be empty and read-only. However, the data source description will be preserved, and
the table can be re-connected to it with

SET TABLE nyt abl e SOURCE ON

When a database is opened, if the source file for an existing text table is missing the table remains disconnected from
its data source, but the source description is preserved. This allows the missing sourcefile to be added to the directory
and the table re-connected to it with the above command.

Disconnecting text tables from their source has several uses. While disconnected, the text source can be edited outside
HSQLDB provided data integrity is respected. When large text sources are used, and several constraints or indexes
need to be created on the table, it is possible to disconnect the source during the creation of constraints and indexes
and reduce the time it takes to perform the operation.

72

Hypers L Text Tables

Text File Usage

The following information applies to the usage of text tables.

Text Filelssues

» File locations are restricted to below the directory that contains the database, unless the
textdb. al | ow full path property is set true as a Java system property. This feature is for security, other-
wise an admin database user may be able to open random files.

 Blank lines are allowed anywhere in the text file, and are ignored.
* Itispossible to define a primary key, identity column, unique, foreign key and check constraints for text tables.

* When atable sourcefileisused withthe i gnore_first=true option, thefirst, ignored lineis replaced with
ablank line after a SHUTDOWN COMPACT, unless the SOURCE HEADER statement has been used.

* Anexisting table sourcefile may include CHARACTER fieldsthat do not begin with the quote character but contain
instances of the quote character. These fields are read as literal strings. Alternatively, if any field begins with the
quote character, then it isinterpreted as a quoted string that should end with the quote character and any instances
of the quote character within the string is doubled. When any field containing the quote character or the separator is
written out to the source file by the program, the field is enclosed in quote character and any instance of the quote
character inside the field is doubled.

* Inserts or updates of CHARACTER type field values are allowed with strings that contains the linefeed or the
carriage return character. This feature is disabled when both quoted and all_quoted properties are false.

» ALTER TABLE commandsthat add or drop columnsor constraints (apart from check constraints) are not supported
with text tablesthat are connected to asource. First usethe SET TABLE <name> SOURCE OFF, make the changes,
then turn the source ON.

Text File Global Properties

Complete list of supported global propertiesin *.propertiesfiles
 textdb.fs

* textdb.vs

» textdb. quot ed

e textdb.all _quoted

e textdb.ignore first

» textdb. encodi ng

t ext db. cache_scal e

o textdb.allow full _path

Transactions

Text tablesfully support transactions. New or changed rowsthat have not been committed are not updated in the source
file. Therefore the source file always contains committed rows.

73

HyperS@L Text Tables

However, text tables are not as resilient to machine crashes as other types of tables. If the crash happens while the text
sourceis being written to, the text source may contain only some of the changes made during a committed transaction.
With other types of tables, additional mechanisms ensure the integrity of the data and this situation will not arise.

74

HyperS@L

Chapter 6. Access Control
Fred Toussi, The HSQL Development Group

$Revision: 3096 $

Copyright 2010 Fred Toussi. Permission is granted to distribute this document without any alteration under
the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group to
distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2009-08-09 17:50:39 +0100 (Sun, 09 Aug 2009) $

Overview

Apart from schemas and their object, each HyperSQL catalog has USER and ROLE objects. These objects are collec-
tively called authorizations. Each AUTHORIZATION has some access rights on some of the schemas or the objects
they contain. The persistent elements of an SQL environment are database objects

Each database object has aname. A nameis an identifier and is unique within its name-space. Authorizations names
follow the rules described below and the case-normal form is stored in the database. When connecting to a database,
the user name and password must match the case of the case-normal form.

identifier

definition of identifier

<identifier> ::= <regular identifier>| <delimted identifier>| <SQ I|anguage
identifier>

<delimted identifier> ::= <doubl e quote> <character sequence> <doubl e quote>
<regul ar identifier> ::= <special character sequence>

<SQ@. |l anguage identifier> ::= <special character sequence>

A<delimted identifier>isasequence of characters enclosed with double-quote symbols. All characters
are alowed in the character sequence.

A <regul ar identifier>isaspecia sequence of characters. It consists of letters, digits and the underscore
characters. It must begin with aletter.

A <SQL | anguage identifier>issimilarto<regul ar identifi er> buttheletterscanrangeonly from
A-Z inthe ASCII character set. Thistype of identifier is used for names of CHARACTER SET objects.

If the character sequence of a delimited identifier is the same as an undelimited identifier, it represents the same
identifier. For example "JOHN" is the same identifier as JOHN. Ina<r egul ar i denti fi er > the case-normal
formis considered for comparison. This form consists of the upper-case of equivalent of all the letters.

The character sequence length of all identifiers must be between 1 and 128 characters.

A reserved word isonethat is used by the SQL Standard for special purposes. Itissimilartoa<r egul ar i denti -
fi er >butit cannot be used asanidentifier for user objects. If areserved word is enclosed in double quote characters,
it becomes a quoted identifier and can be used for database objects.

Authorizations and Access Control

In general, ROLE and USER objects simply control access to schema objects. Thisis the scope of the SQL Standard.
However, there are special roles that allow the creation of USER and ROLE objects and also alow some special

75

HyperS@L Access Control

operations on the database as a whole. These roles are not defined by the Standard, which has left it to implementors
to define such roles as they are needed for the particular SQL implementation.

A ROLE has anameacaollection of zero or more other roles, plus some privileges (accessrights). A USER hasaname
and a password. It similarly has a collection of zero or more roles plus some privileges.

USER objects existed in the SQL-92, but ROLE objects wereintroduced in SQL:1999. Originally it wasintended that
USER objects would normally be the same as the operating system USER objects and their authentication would be
handled outside the SQL environment. The co-existence of ROLE and USER objects results in complexity. With the
addition of ROLE objects, there is no rationale, other than legacy support, for granting privileges to USER objects
directly. It is better to create roles and grant privileges to them, then grant the roles to USER objects.

The Standard effectively defines a special ROLE, named PUBLIC. All authorization have the PUBLIC role, which
cannot be removed from them. Therefore any access right assigned to the PUBLIC role applies to all authorizations
in the database. For many simple databases, it is adequate to create a single, non-admin user, then assign accessrights
to the pre-existing PUBLIC role. Accessto INFORMATION_SCHEMA viewsisgranted to PUBLIC, therefore these
views are accessibleto all. However, the contents of each view depends on the ROLE or USER (AUTHORIZATION)
that isin force while accessing the view.

Each schema has asingle AUTHORIZATION. Thisis commonly known as the owner of the schema. All the objects
in the schema inherit the schema owner. The schema owner can add objects to the schema, drop them or alter them.

By default, the objects in a schema can only be accessed by the schema owner. The schema owner can grant access
rights on the objects to other users or roles.

authorization identifier
authorization identifier
<aut horization identifier> ::= <role name> | <user nane>

Authorization identifiers share the same name-space within the database. The same name cannot be used for a USER
and aROLE.

Built-In Roles and Users

There are some pre-defined roles in each database; some defined by the SQL Standard, some by HyperSQL. These
roles can be assigned to users (directly or via other, user-defined roles). In addition, there is the default initial user,
SA, created with each new database.

PUBLIC
the PUBLIC role

Therolethat isassigned to all authorizations (roles and users) in the database. Thisrole has accessrightsto all objects
in the INFORMATION_SCHEMA. Any roles or rights granted to this role, are in effect granted to all users of the
database.

_SYSTEM
the SYSTEM role

This role is the authorization for the pre-defined (system) objects in the database, including the
INFORMATION_SCHEMA. Thisrole cannot be assigned to any authorization.

DBA

76

HyperS@L Access Control

the DBA role (Hyper SQL-specific)

This is a special role in HyperSQL. A user that has this role can perform all possible administrative tasks on the
database. The DBA role can also act as a proxy for al the roles and users in the database. This means it can do
everything the authorization for a schema can do, including dropping the schema or its objects, or granting rights on
the schema objects to a grantee.

CREATE_SCHEMA
the CREATE_SCHEMA role (Hyper SQL-specific)

An authorization that has this role, can create schemas. The DBA authorization has this role and can grant it to other
authorizations.

CHANGE_AUTHORIZATION
the CHANGE_AUTHORIZATION role (Hyper SQL-specific)

A user that has this role, can change the authorization for the current session to another user. The DBA authorization
has thisrole and can grant it to other authorizations.

SA
the SA user (Hyper SQL-specific)

This user is automatically created with a new database and has the DBA role. Initially, the password for this user is
an empty string. After connecting to the new database as this user, it is possible to change the password, create other
users and created new schema objects. The SA user can be dropped by another user that has the DBA role.

Access Rights

By default, the objects in a schema can only be accessed by the schema owner. But the schema owner can grant
privileges (access rights) on the objects to other users or roles.

Things can get far more complex, because the grant of privileges can be made WITH GRANT OPTION. In this case,
the role or user that has been granted the privilege can grant the privilege to other roles and users.

Privileges can also be revoked from users or roles.

The statements for granting and revoking privileges normally specify which privileges are granted or revoked. How-
ever, thereisashortcut, ALL PRIVILEGES, which means all the privileges that the <gr ant or > has on the schema
object. The <gr ant or > isnormally the CURRENT _USER of the session that issues the statement.

The user or role that is granted privilegesisreferred to as <gr ant ee> for the granted privileges.
Table

For tables, including views, privileges can be granted with different degrees of granularity. It is possible to grant a
privilege on al columns of atable, or on specific columns of the table.

The DELETE privilege applies to the table, rather than its columns. It appliesto al DELETE statements.

The SELECT, INSERT and UPDATE privileges may apply to all columnsor to individual columns. These privileges
determine whether the <gr ant ee> can execute SQL data statements on the table.

The SELECT privilege designates the columns that can be referenced in SELECT statements, as well as the columns
that areread in aDELETE or UPDATE statement, including the search condition.

77

HyperS@L Access Control

The INSERT privilege designates the columns into which explicit values can be inserted. To be able to insert arow
into the table, the user must therefore have the INSERT privilege on the table, or at least all the columns that do not
have a default value.

The UPDATE privilege simply designates the table or the specific columns that can be updated.

The REFERENCES privilege alows the <gr ant ee> to define a FOREIGN KEY constraint on a different table,
which references the table or the specific columns designated for the REFERENCES privilege.

The TRIGGER privilege alows adding atrigger to the table.
Sequence, Type, Domain, Character Set, Callation, Trandliteration,

For these objects, only USAGE can be granted. The USAGE privilege is needed when object is referenced directly
inan SQL statement.

Routine

For routines, including procedures or functions, only EXECUTE privilege can be granted. This privilege is needed
when the routine is used directly in an SQL statement.

Other Objects

Other objects such as constraints and assertions are not used directly and there is no grantable privilege that refers
to them.

Statements for Authorization and Access Control

The statements listed below allow creation and destruction of USER and ROLE objects. The GRANT and REVOKE
statements allow roles to be assigned to other roles or to users. The same statements are also used in a different form
to assign privileges on schema objects to users and roles.

CREATE USER
user definition (HyperSQL)
<user definition> ::= CREATE USER <user name> PASSWORD <password> [ADM N]

Define a new user and its password. <user nane> isan SQL identifier. If it is double-quoted it is case-sensitive,
otherwiseitisturned to uppercase. <passwor d> isastring enclosed with single quote charactersand is case-sensitive.
If ADM N is specified, the DBA role is granted to the new user. Only a user with the DBA role can execute this
statement.

DROP USER
drop user statement (HyperSQL)
<drop user statement> ::= DROP USER <user name>

Drop (destroy) an existing user. If the specified user is the authorization for a schema, the schema is destroyed. Only
a user with the DBA role can execute this statement.

ALTER USER ... SET PASSWORD
set the password for a user (Hyper SQL)

<alter user set password statenent> ::= ALTER USER <user nane> SET PASSWORD
<passwor d>

78

HyperS@L Access Control

Change the password of an existing user. <user name> is an SQL identifier. If it is double-quoted it is case-
sensitive, otherwise it is turned to uppercase. <passwor d> is a string enclosed with single quote characters and is
case-sensitive. Only a user with the DBA role can execute this command.

ALTER USER ... SET INITIAL SCHEMA
set theinitial schema for a user (HyperSQL)

<alter user set initial schema statenent> ::= ALTER USER <user nane> SET | NI Tl AL
SCHEMA <schena nane> | DEFAULT

Changetheinitial schemafor auser. Theinitial schemaisthe schemaused by default for SQL statementsissued during
asession. If DEFAULT is used, the default initial schema for all usersis used as the initial schema for the user. The
SET SCHEMA command alows the user to change the schema for the duration of the session. Only a user with the
DBA role can execute this statement.

SET PASSWORD
set password statement (Hyper SQL)
<set password statenent> ::= SET PASSWORD <passwor d>

Set the password for the current user. <passwor d> is a string enclosed with single quote characters and is case-
sensitive.

SET INITIAL SCHEMA
set theinitial schema for the current user (Hyper SQL)
<set initial schema statenment> ::= SET I N TI AL SCHEMA <schenma name> | DEFAULT

Change the initial schema for the current user. The initial schema is the schema used by default for SQL statements
issued during a session. If DEFAULT is used, the default initial schemafor all usersis used as the initial schema for
the current user. The separate SET SCHEMA command allows the user to change the schema for the duration of the
session. See also the Sessions and Transactions chapter.

SET DATABASE DEFAULT INITIAL SCHEMA
set the default initial schema for all users (HyperSQL)

<set dat abase default initial schenm statenent> ::= SET DATABASE DEFAULT | NI Tl AL
SCHEMA <schema nanme>

Setstheinitial schemafor new users. Thisschemacan later be changed withthe<set initial schena state-
nment > command.

CREATE ROLE
role definition
<role definition> ::= CREATE ROLE <role name> [WTH ADM N <grant or>]

Defines a new role. Initially the role has no rights, except those of the PUBLIC role. Only a user with the DBA role
can execute this command.

DROP ROLE

drop role statement

79

HyperS@L Access Control

<drop role statenent> ::= DROP ROLE <rol e nane>

Drop (destroy) arole. If the specified role is the authorization for a schema, the schemais destroyed. Only a user with
the DBA role can execute this statement.

GRANTED BY

grantor determination

GRANTED BY <gr ant or >

<grantor> ::= CURRENT_USER | CURRENT_ROLE

The authorization that is granting or revoking arole or privileges. The optional GRANTED BY <gr ant or > clause
can beused in various statementsthat perform GRANT or REV OKE actions. If the clauseis not used, the authorization
is CURRENT_USER. Otherwisg, it is the specified authorization.

GRANT
grant privilege statement

<grant privilege statement> ::= GRANT <privileges> TO <grantee> [{ <conmma>
<grantee> }...] [WTH GRANT OPTION] [GRANTED BY <grantor>]

Assign privileges on schema objects to roles or users. Each <gr ant ee> isaroleor auser. If [W TH GRANT
OPTI ON] isspecified, then the <gr ant ee> can assign the privileges to other <gr ant ee> objects.

<privileges> ::= <object privileges> ON <object nanme>

<object name> ::= [TABLE] <table nane> | DOVAIN <domai n name> | COLLATI ON
<col | ati on nane> | CHARACTER SET <character set name> | TRANSLATION <transliter-
ation name> | TYPE <user-defined type nane> | SEQUENCE <sequence gener at or nane>
| <specific routine designator> | ROUTINE <routine nanme> | FUNCTI ON <function
nanme> | PROCEDURE <procedure nane>

<object privileges> ::= ALL PRIVILEGES | <action> [{ <comma> <action> }...]

<action> ::= SELECT | SELECT <left paren> <privilege colum |ist> <right paren>
| DELETE | INSERT [<left paren> <privilege columm |list> <right paren>] | UPDATE
[<left paren> <privilege colum list> <right paren>] | REFERENCES [<left
paren> <privilege colum list> <right paren>] | USAGE | TRIGGER | EXECUTE

<privilege colum list> ::= <colum nane |ist>
<grantee> ::= PUBLIC | <authorization identifier>

The<obj ect privil eges> that can be used depend on the type of the <obj ect name>. These are discussed
in the previous section. For atable, if <pri vi | ege col utm 1i st > isnot specified, then the privilege is granted
on the table, which includes al of its columns and any column that may be added to it in the future. For routines, the
name of the routine can be specified in two ways, either as the generic name as the specific name. HyperSQL allows
referencing all overloaded versions of aroutine at the same time, using its name. This differs from the SQL Standard
which requiresthe use of <speci fi c routine desi gnat or > to grant privileges separately on each different
signature of the routine.

Each <gr ant ee> isthe name of arole or auser. Examples of GRANT statement are given below:

\GRAI\IT ALL ON SEQUENCE aSequence TO rol eOr User

80

HyperS@L Access Control

GRANT SELELCT ON aTabl e TO rol eOr User

GRANT SELECT, UPDATE ON aTABLE TO rol eOrUser1, rol eOr User2

GRANT SELECT(col umA, col umB), UPDATE(col ummA, columB) ON TABLE aTabl e TO rol eOr User
GRANT EXECUTE ON SPECI FI C ROUTI NE aroutine_1234 TO rol Or User

As mentioned in the general discussion, it is better to define arole for the collection of all the privileges required by
an application. Thisroleisthen granted to any user. If further changes are made to the privileges of thisrole, they are
automatically reflected in all the users that have therole.

GRANT
grant role statement

<grant role statenent> ::= GRANT <role nane> [{ <comma> <role nane> }... |
TO <grantee> [{ <comma> <grantee> }...] [WTH ADMN OPTION] [GRANTED BY
<grantor>]

Assign rolesto roles or users. One or more roles can be assigned to one or more<gr ant ee> objects. A <gr ant ee>
isauser or arole. If the[WTH ADM N OPTI ON] is specified, then each <gr ant ee> can grant the newly
assigned roles to other grantees. An example of user and role creation with grantsis given below:

CREATE USER appuser

CREATE ROLE approl e

GRANT approl e TO appuser

GRANT SELECT, UPDATE ON TABLE atabl e TO approl e
GRANT USAGE ON SEQUENCE asequence to approle
GRANT EXECUTE ON ROUTI NE aroutine TO approle

REVOKE privilege
revoke statement

<revoke privilege statenment> ::= REVOKE [GRANT OPTION FOR] <privil eges> FROM
<grantee> [{ <comma> <grantee>}...] [GRANTED BY <grantor>] RESTRI CT | CASCADE

Revoke privileges from a user or role.
REVOKE role
revoke role statement

<revoke rol e statenment> :: = REVOKE[ADM N OPTI ON FOR] <rol e revoked> [{ <comma>
<role revoked> }...] FROM <grantee> [{ <comma> <grantee> }...] [GRANTED
BY <grantor>] RESTRICT | CASCADE

<rol e revoked> ::= <rol e nanme>

Revoke arole from users or roles.

81

HyperS@L

Chapter 7. Data Access and Change
Fred Toussi, The HSQL Development Group

$Revision: 3601 $

Copyright 2010 Fred Toussi. Permission is granted to distribute this document without any alteration under
the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group to
distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2010-05-31 20:17:47 -0400 (Mon, 31 May 2010) $

Overview

HyperSQL data access and data change statements are fully compatible with the latest SQL:2008 Standard. There
are afew extensions and some relaxation of rules, but these do not affect statements that are written to the Standard
syntax. Thereisfull support for classic SQL, as specified by SQL-92, and many enhancements added in later versions
of the standard.

Cursors And Result Sets

An SQL statement can executed intwo ways. Oneway istousethej ava. sql . St at enent interface. The Statement
object can be reused to execute completely different SQL statements. Alternatively a Pr epar edSt at nent can be
used to execute an SQL statement repeatedly, and the statements can be parameterized. Using either form, if the SQL
statement is a query expression, aResul t Set isreturned.

In SQL, when a query expression (SELECT or similar SQL statement) is executed, an ephemeral table is created.
When thistable is returned to the application program, it is returned as a result set, which is accessed row-by-row by
acursor. A JDBC Resul t Set represents an SQL result set and its cursor.

The minimal definition of a cursor is alist of rows with a position that can move forward. Some cursors also allow
the position to move backwards or jump to any position in thelist.

An SQL cursor has severa attributes. These attributes depend on the query expression. Some of these attributes can
be overridden by specifying qualifiersin the SQL statement or by specifying values for the parameters of the JIDBC
St at ement or Pr epar edSt at enent .

Columns and Rows

The columns of the rows of the result set are determined by the query expression. The number of columns and the type
and name characteristics of each column are known when the query expression is compiled and before its execution.
This metadata information remains constant regardless of changes to the contents of the tables used in the query
expression. The metadata for the JDBC Resul t Set isin the form of a Resul t Set Met aDat a object. Various
methods of the Resul t Set Met aDat a interface return different properties of each column of the Resul t Set .

A result set may contain O or more rows. The rows are determined by the execution of the query expression.

Theset MaxRows (i nt) method of JDBC St at enent allows limiting the number of rows returned by the state-
ment. Thislimit is conceptually applied after the result has been built, and the excess rows are discarded.

Navigation

A cursor is either scrollable or not. Scrollable cursors allow accessing rows by absolute or relative positioning. No-
scroll cursors only allow moving to the next row. The cursor can be optionally declared with the SQL qualifiers

82

HyperS@L Data Access and Change

SCROLL, or NO SCROLL. The JDBC statement parameter can be specified as: TYPE_ FORWARD_ONLY and
TYPE_SCROLL_INSENSITIVE. The JDBC type TYPE_SCROLL_SENSITIVE is not supported by HSQLDB.

The defaultisNO SCROLL or TYPE_FORWARD_ONLY.

When aJDBC Resul t Set isopened, it is positioned before the first row. Using thenext () method the positionis
moved to the first row. While the Resul t Set is positioned on a row, various getter methods can be used to access
the columns of the row.

Updatability

The result returned by some query expressions is updatable. HSQL DB supports core SQL updatability features, plus
some enhancements from the SQL optional features.

A query expression is updatable if it is a SELECT from a single underlying base table (or updatable view) either
directly or indirectly. A SELECT statement featuring DISTINCT or GROUP BY or FETCH, LIMIT, OFFSET is not
updatable. In an updatabl e query expression, one or more columns are updatable. An updatable column isacolumn that
can betraced directly to the underlying table. Therefore, columnsthat contain expressions are not updatable. Examples
of updatable query expressions are given below. The view V is updatable when its query expression is updatable. The
SELECT statement from this view is also updatable:

SELECT A B FROM T WHERE C > 5

SELECT A, B FROM (SELECT * FROM T WHERE C > 10) AS TT WHERE TT. B <10
CREATE VIEW V(X,Y) AS SELECT AL B FROMT WHERE C > 0 AND B < 10
SELECT X FROMV VHERE Y = 5

If acursor is declared with the SQL qualifier, FOR UPDATE OF <col umm nane | i st >, then only the stated
columns in the result set become updatable. If any of the stated columns is not actually updatable, then the cursor
declaration will not succeed.

If the SQL qualifier, FOR UPDATE is used, then al the updatable columns of the result set become updatable.
If acursor is declared with FOR READ ONLY, then it is not updatable.

In HSQLDB, if FOR READ ONLY or FOR UPDATE is not used then al the updatable columns of the result set
become updatable. This relaxes the SQL standard rule that in this case limits updatability to only simply updatable
SELECT statements (where all columns are updatable).

In JDBC, CONCUR_READ_ONLY or CONCUR_UPDATABLE can be specified for the St at enent parameter.
CONCUR_UPDATABLE isrequiredif thereturning ResultSet isto be updatable. If CONCUR_READ_ONLY, which
is the default, is used, then even an updatable ResultSet becomes read-only.

When a Resul t Set is updatable, various setter methods can be used to modify the column values. The names of
the setter methods begin with "update”. After al the updates on arow are done, the updat eRow() method must be
called to finalise the row update.

Anupdatable Resul t Set may or may not beinsertable-into. In aninsertable Resul t Set , al columns of the result
are updatable and any column of the base table that is not in the result must be a generated column or have a default
value.

IntheResul t Set object, aspecia pseudo-row, called theinsert row, isused to populate valuesfor insertion into the
Resul t Set (and consequently, into the base table). The setter methods must be used on all the columns, followed
by acall toi nsert Row() .

Individual rows from all updatable result sets can be deleted one at atime. The del et eRow() is called when the
Resul t Set ispositioned on arow.

83

HyperS@L Data Access and Change

While using an updatable ResultSet to modify data, it is recommended not to change the same data using another
ResultSet and not to execute SQL data change statements that modify the same data.

Sensitivity

The sensitivity of the cursor relatesto visibility of changes made to the data by the same transaction but without using
the given cursor. While the result set is open, the same transaction may use statements such as INSERT or UPDATE,
and change the data of the tables from which the result set datais derived. A cursor is SENSITIVE if it reflects those
changes. It iSINSENSITIVE if it ignores such changes. 1t iSASENSITIVE if behaviour isimplementation dependent.

The SQL defaultis ASENSITIVE, i.e., implantation dependent.

In HSQLDB all cursors are INSENSITIVE. They do not reflect changes to the data made by other statements.

Holdability

A cursor isholdableif the result set is not automatically closed when the current transaction is committed. Holdability
can be specified in the cursor declaration using the SQL qualifiers WITH HOLD or WITHOUT HOLD.

In JDBC, hodability is specified using either of the following values for the Statement parameter:
HOLD_CURSORS_OVER_COMMIT, or CLOSE_CURSORS _AT_COMMIT.

The SQL defaultisWITHOUT HOLD.

The JDBC default for HSQLDB result sets is WITH HOLD for read-only result sets and WITHOUT HOLD for
updatable result sets.

If the holdability of aResul t Set is specified in a conflicting manner in the SQL statement and the JDBC St at e-
nment object, the JIDBC setting takes precedence.

Autocommit

The autocommit property of a connection isafeature of JDBC and ODBC and is not part of the SQL Standard. In au-
tocommit mode, all transactional statements are followed by an implicit commit. In autocommit mode, all Resul t -
Set objects are read-only and holdable.

JDBC Overview

The JDBC settings, ResultSet. CONCUR_READONLY and ResultSet. CONCUR_UPDATABLE are the aternatives
for read-only or updatability. The default is ResultSet. CONCUR_READONLY .

The JDBC settings, ResultSet. TYPE_FORWARD_ONLY, ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. TYPE_SCROLL_SENSITIVE are the aternatives for both scrollability (navigation) and sensitivity. Hy-
perSQL does not support ResultSet. TYPE_SCROLL_SENSITIVE. The two other aternatives can be used for both
updatable and read-only result sets.

The JOBC settings ResultSet.CLOSE_CURSORS_AT_COMMIT and
ResultSet. HOLD_CURSORS_OVER_COMMIT are the dternatives for the lifetime of the result set. The default is
ResultSet. CLOSE_ CURSORS_AT_COMMIT. The other setting can only be used for read-only result sets.

Examples of creating statements for updatabl e result sets are given below:

Connection ¢ = newConnection();
St at ement st

HyperS@L Data Access and Change

c.set AutoCommi t (fal se);
st c.createStatenment (Result Set. TYPE_FORWARD_ONLY, Result Set. CONCUR _UPDATABLE) ;
st c.createStatenment (Result Set. TYPE_SCROLL_I NSENSI Tl VE, Resul t Set . CONCUR_UPDATABLE) ;

JDBC Parameters

When a JDBC PreparedStatement or CallableStatement is used with an SQL statement that contains dynamic param-
eters, the data types of the parameters are resolved and determined by the engine when the statement is prepared. The
SQL Standard has detailed rules to determine the data types and imposes limits on the maximum length or precision
of the parameter. HyperSQL applies the standard rules with two exceptions for parameters with String and BigDeci-
mal Javatypes. HyperSQL ignores the limits when the parameter value is set, and only enforces the necessary limits
when the PreparedStatement is executed. In all other cases, parameter type limits are checked and enforce when the
parameter is set.

In the example below the setString() calls do not raise an exception, but one of the execute() statements does.

/1] table definition: CREATE TABLE T (NAME VARCHAR(12), ...)

Connection ¢ = newConnection();

PreparedSt at enent st = c.prepareStatenent ("SELECT * FROM T WHERE NAME = ?");

/'l type of the paraneter is VARCHAR(12), which limts length to 12 characters

st.setString(1, "Eyjafjallajokull"); // string is longer than type, but no exception is raised
here

set.execute(); // executes with no exception and does not find any rows

/1 but if an UPDATE is attenpted, an exception is raised

st = c.prepareStatenment ("UPDATE T SET NAME = ? WHERE I D = 10");

st.setString(1, "Eyjafjallajokull"); // string is longer than type, but no exception is raised
here

st.execute(); // exception is thrown when Hyper SQL checks the value for update

All of the above also appliesto setting the values in new and updated rows in updatable ResultSet objects.

JDBC parameters can be set with any compatible type, as supported by the IDBC specification. For CLOB and BLOB
types, you can use streams, or create instances of BLOB or CLOB before assigning them to the parameters. You can
even use CLOB or BLOB objects returned from connections to other RDBM S servers. The Connection.createBlob()
and createClob() methods can be used to create the new LOBSs. For very large LOB's the stream methods are preferable
as they use less memory.

For array parameters, you must use ajava.sgl.Array object that contains the array elements before assigning to JDBC
parameters. The Connection.createArrayOf(...) method can be used to create a new object, or you can use an Array
returned from connections to other RDBM S servers.

JDBC Returned Values

The methods of the JDBC ResultSet interface can be used to return values and to convert value to different types as
supported by the IDBC specification.

When a CLOB and BLOB abject is returned from a ResultSet, no data is transferred until the datais read by various
methods of java.sql.CLOB and java.sgl.BLOB. Datais streamed in large blocks to avoid excessive memory use.

Array objects are returned as instances of java.sgl.Array.

Syntax Elements

The syntax elements that can be used in data access and data change statements are described in this section. The SQL
Standard has a very extensive set of definitions for these elements. The BNF definitions given here are sometimes
simplified.

85

HyperS@L Data Access and Change

Literals

Literals are used to express constant values. The general type of aliteral is known by its format. The specific type
is based on conventions.

unicode escape elements
unicode escape el ements

<Uni code escape specifier> 1= [UESCAPE <quot e><Uni code escape
char act er ><quot e>]

<Uni code escape value> ::= <Unicode 4 digit escape value> | <Unicode 6 digit
escape value> | <Unicode character escape val ue>

<Uni code 4 digit escape val ue> 1= <Uni code escape
char act er ><hexi t ><hexi t ><hexi t ><hexi t >

<Unicode 6 digit escape value> ::= <Unicode escape character><plus sign>
<hexi t ><hexi t ><hexi t ><hexi t ><hexi t ><hexi t >

<Uni code character escape val ue> ::= <Uni code escape character><Uni code escape
character>

<Uni code escape character> ::= a single character than a <hexit> (a-f, AF,
0-9), <plus sign> <quote> <double quote> or <white space>

character literal

character literal

<character string literal> ::= [<introducer><character set specification>]
<quote> [<character representation>. ..] <quote> [{ <separator> <quote>
[<character representation>...] <quote> }...]

<i ntroducer> ::= <underscore>

<character representation> ::= <nonquote character> | <quote synbol >

<nonquot e character> ::= any character apart fromthe quote synbol

<quot e synbol > :: = <quot e><quot e>

<national character string literal> ::= N <quote> [<character representa-
tion> ..] <quote> [{ <separator> <quote> [<character representation> ..]
<quote> }...]

<Uni code character string literal> ::= [<introducer><character set specifica-
tion>] UWU<anpersand><quote> [<Unicode representation> ..] <quote> [{ <sepa-
rator> <quote> [<Unicode representation> ..] <quote> }...] <Unicode escape

specifier>
<Uni code representation> ::= <character representati on>| <Uni code escape val ue>

The type of acharacter literal is CHARACTER. The length of the string literal is the character length of the type. If
the quote character is used in a string, it is represented with two quote characters. Long literals can be divided into
multiple quoted strings, separated with a space or end-of-line character.

86

HyperS@L Data Access and Change

Unicode literal s start with U& and can contain ordinary characters and unicode escapes. A unicode escape beginswith
the backslash (\) character and is followed by four hexadecimal characters which specify the character code.

Example of character literals are given below:

'"aliteral' ' string seperated” ' into parts'
"a string''s literal formw th quote character’
U& Uni code string with G eek delta \0394 and phi \03a6 letters'

binary literal

binary literal

<binary string literal> ::= X <quote> [<space>...] [{ <hexit> [<space>...]
<hexit> [<space>...] }...] <quote> [{ <separator> <quote> [<space>...]
[{ <hexit> [<space>...] <hexit>][<space>...] }...] <quote> }...]
<hexit> ::=<digit>] A| B| C| D| E|J F] a|] b] c]|] d] e] f

Thetypeof abinary literal isBINARY . The octect length of the binary literal isthelength of the type. Case-insensitive
hexadecimal charactersare used inthe binary string. Each pair of charactersintheliteral representsabytein the binary
string. Long literals can be divided into multiple quoted strings, separated with a space or end-of-line character.

\X' 1abACD34' ' Af'

bit literal

bit literal

<bit string literal>::= B <quote> [<bit> ...] <quote> [{ <separator> <quote>
[<bit>...] <quote> }...]

<bit>::=0] 1

The type of a binary literal is BIT. The bit length of the bit literal is the length of the type. Digits 0 and 1 are used
to represent the bits. Long literals can be divided into multiple quoted strings, separated with a space or end-of-line
character.

\B’ 10001001' ' 00010’

numeric literal

numeric literal

<signed nunmeric literal> ::=] <sign>] <unsigned nuneric literal >

<unsi gned nureric literal> ::= <exact nuneric literal> | <approxi mate nuneric
literal >

<exact nuneric literal>::=<unsignedinteger>][<period>[<unsignedinteger>]]

| <period> <unsigned integer>

<sign> ::= <plus sign> | <mnus sign>
<approximate nuneric literal> ::= <manti ssa> E <exponent >
<manti ssa> ::= <exact nuneric literal >

87

HyperS@L Data Access and Change

<exponent > ::= <signed integer>
<signed integer> ::= [<sign>] <unsigned integer>
<unsi gned integer> ::= <digit>..

The type of an exact numeric literal without adecimal point isINTEGER, BIGINT, or DECIMAL, depending on the
value of the literal (the smallest type that can represent the value is the type).

The type of an exact numeric literal with adecimal point is DECIMAL. The precision of adecimal literal isthe total
number of digits of the literal. The scale of the literal isthe total number of digits to the right of the decimal point.

Thetype of an approximate numeric literal is DOUBLE. An approximate numeric literal always includes the mantissa
and exponent, separated by E.

12
34.35
+12E- 2

boolean literal

boolean literal

<boolean literal> ::= TRUE | FALSE | UNKNOM
The boolean literal is one of the specified keywords.

datetime and interval literal

datetime and interval literal

<datetine literal > ::= <date literal> | <tine literal> | <timestanp literal >

<date literal > ::= DATE <date string>

<tine literal> ::= TIME <tine string>

<timestanp literal> ::= TI MESTAMP <ti nmestanp string>

<date string> ::= <quote> <unquoted date string> <quote>

<time string> ::= <quote> <unquoted time string> <quote>
<timestanp string> ::= <quote> <unquoted tinestanp string> <quote>

<tinme zone interval > ::= <sign> <hours val ue> <col on> <nmi nutes val ue>

<date value> ::= <years value> <minus sign> <nonths val ue> <nmi nus sign> <days
val ue>

<time value> ::= <hours val ue> <col on> <m nutes val ue> <col on> <seconds val ue>
<interval literal>::=INTERVAL [<sign>] <interval string><interval qualifier>
<interval string> ::= <quote> <unquoted interval string> <quote>

<unquot ed date string> ::= <date val ue>

88

HyperS@L Data Access and Change

<unquoted tine string> ::= <tine value> [<time zone interval >]

<unquot ed timestanp string> ::= <unquoted date string> <space> <unquoted time
string>

<unquoted interval string> ::=] <sign>] { <year-nonth literal> | <day-tine
literal >}

<year-nonth literal > ::= <years val ue> [<mi nus sign> <nponths value>] | <nonths
val ue>

<day-tine literal > ::= <day-tinme interval > | <time interval >

<day-tine interval > ::= <days val ue> [<space> <hours val ue> [<col on> <m nut es

val ue> [<col on> <seconds value>]]]

<tinme interval > ::= <hours value> [<col on> <mi nutes val ue> [<col on> <seconds
value>]] | <minutes value> [<col on> <seconds value>] | <seconds val ue>
<years val ue> ::= <datetine val ue>

<mont hs value> ::= <datetime val ue>

<days val ue> ::= <datetine val ue>

<hours value> ::= <datetinme val ue>

<m nutes value> ::= <datetine val ue>

<seconds val ue> ::= <seconds i nteger value> [<period> [<seconds fraction>]]
<seconds integer value> ::= <unsigned integer>

<seconds fraction> ::= <unsigned integer>

<dat eti ne val ue> ::= <unsigned integer>

Thetype of adatetime or interval typeis specified in theliteral. The fractional second precision isthe number of digits
in the fractional part of the literal. Details are described in the SQL Language chapter

DATE ' 2008- 08-08'
TIME ' 20: 08: 08'
TI MESTAMP ' 2008- 08- 08 20: 08: 08. 235’

I NTERVAL ' 10" DAY
I NTERVAL -'08:08" M NUTE TO SECOND

References, etc.

References are identifier chains, which can be a single identifiers or identifiers chains composed of single identifiers
chained together with the period symboal.

identifier chain
identifier chain
<identifier chain> ::= <identifier> [{ <period> <identifier>1}...]

<basic identifier chain> ::= <identifier chain>

89

HyperS@L Data Access and Change

A period-separated chain of identifiers. Theidentifiersin anidentifier chain can refer to database objectsin ahierarchy.
The possible hierarchies are as follows. In each hierarchy, elements from the start or the end can be missing, but the
order of elements cannot be changed.

catalog, schema, database object
catalog, schema, table, column
correlation name, column

Examples of identifier chain are given below:

SELECT MYCAT. MYSCHEMA. MYTABLE. MYCOL FROM MYCAT. MYSCHEMA. MYTABLE
DROP TABLE MYCAT. MYSCHEMVA. MYTABLE CASCADE
ALTER SEQUENCE MYCAT. MYSCHEVA. MYSEQUENCE RESTART W TH 100

column reference
column reference

<colum reference> ::= <basic identifier chain> | MODULE <period> <qualified
identifier> <period> <colum nane>

Reference a column or aroutine variable.

SQL parameter reference

L parameter reference

<SQ. paraneter reference> ::= <basic identifier chain>
Reference an SQL routine parameter.

contextually typed value specification

contextually typed val ue specification

<contextually typed value specification> ::= <null specification> | <default
speci fication>

<nul | specification> ::= NULL
<default specification> ::= DEFAULT

Specify a value whose data type or value is inferred from its context. DEFAULT is used for assignments to table
columns that have a default value, or to table columns that are generated either as an IDENTITY vaue or as an
expression. NULL can be used only in a context where the type of the value is known. For example, aNULL can be
assigned to a column of thetablein an INSERT or UPDATE statement, because the type of the column is known. But
if NULL isusedina SELECT list, it must be used in a CAST statement.

Value Expression

Vaue expression is ageneral name for all expressions that return a value. Different types of expressions are allowed
in different contexts.

value expression primary

value expression primary

90

HyperS@L Data Access and Change

<val ue expression primary> ::= <parenthesi zed val ue expressi on> | <nonpar ent he-
si zed val ue expression primry>

<parent hesi zed val ue expression> ::= <left paren> <value expression> <right
par en>

<nonpar ent hesi zed val ue expression prinmary> ::= <unsi gned val ue specification>
| <colum reference> | <set function specification> | <scalar subquery> |

<case expression> | <cast specification> | <next value expression> | <routine
i nvocati on>

Specify avaluethat is syntactically self-delimited.
value specification

value specification

<val ue specification> ::= <literal > | <general value specification>

<unsi gned val ue specification> ::= <unsigned literal> | <general value speci-
fication>

<target specification> ::= <host paraneter specification> | <SQ paraneter

reference> | <columm reference> | <dynam c paraneter specification>

<sinpl e target specification>::=<host paraneter specification>]| <SQ paraneter
reference> | <columm reference> | <enbedded vari abl e nane>

<host paraneter specification> ::= <host paraneter nane> [<indicator parane-
ter>]
<dynam c paraneter specification> ::= <question mark>

Specify one or more values, host parameters, SQL parameters, dynamic parameters, or host variables.
row value expression
row value expression

<row value expression> ::= <row value special case> | <explicit row value
construct or >

<row val ue predicand> ::= <row value special case> | <row value constructor
pr edi cand>

<row val ue special case> ::= <nonparenthesi zed val ue expression prinary>

<explicit rowval ue constructor> ::=<left paren> <row val ue constructor el emrent >
<conma> <row val ue constructor elenent list> <right paren> |

ROW <l eft paren> <row value constructor elenment list> <right paren> | <row
subquery>

Specify arow consisting of one or more elements. A commaseparated list of expressions, enclosed in brackets, with the
optional keyword ROW. In SQL, arow containing asingle element can often be used where asingle valueis expected.

set function specification

91

HyperS@L Data Access and Change

set function specification

<set function specification> ::= <aggregate function> | <grouping operation>
<groupi ng operation> ::= GROUPING <l eft paren> <columm reference> [{ <comm>
<colum reference> }...] <right paren>

Specify avalue derived by the application of afunction to an argument. Early releases of HyperSQL 2.0 do not support
<groupi ng operation>.

COALESCE

coal esce expression

<coal esce expression> := COALESCE <left paren> <value expression> { <coma>
<val ue expression> }... <right paren>

Replace null values with another value. The coalesce expression has two or more instances of <value expression>. |If
thefirst <value expression> evaluatesto anon-null value, it is returned as the result of the coalesce expression. If itis
null, the next <val ue expr essi on> isevaluated and if it evaluates to a non-non value, it is returned, and so on.

The type of the return value of a COALESCE expression is the aggregate type of the types of al the <val ue ex-
pr essi on> instances. Therefore, any value returned isimplicitly cast to this type. HyperSQL also features built-in
functions with similar functionality.

NULLIF
nullif expression

<nullif expression> := NULLIF <left paren> <val ue expression> <commua> <val ue
expression> <right paren>

Return NULL if two values are equal. If the result of the first <val ue expressi on> isnot equa to the result
of the second, then it is returned, otherwise NULL is returned. The type of the return value is the type of the first
<val ue expressi on>.

'SELECT i, NULLIF(n, 'not defined) FROMt

CASE

case specification

<case specification> ::= <sinple case> | <searched case>

<si npl e case> ::= CASE <case operand> <sinpl e when clause>... [<else clause>]
END

<searched case> ::= CASE <searched when clause>... [<else clause>] END

<si npl e when cl ause> ::= WHEN <when operand |ist> THEN <result>

<sear ched when cl ause> ::= WHEN <search conditi on> THEN <result>

<el se clause> ::= ELSE <result>

<case operand> ::= <row val ue predi cand> | <overl aps predicate part 1>

<when operand list> ::= <when operand> [{ <conma> <when operand> }...]

92

HyperS@L Data Access and Change

<when operand> ::= <row value predicand> | <conparison predicate part 2> |
<between predicate part 2> | <in predicate part 2> | <character |ike predicate
part 2> | <octet like predicate part 2> | <simlar predicate part 2> | <regex |like
predicate part 2> | <null predicate part 2> | <quantified conparison predicate
part 2> | <match predicate part 2> | <overlaps predicate part 2> | <distinct
predi cate part 2>

<result> ::= <result expression> | NULL
<result expression> ::= <val ue expression>

Specify a conditional value. The result of a case expression is always a value. All the values introduced with THEN
must be of the same type.

An (simple) example of the CA SE statement isgiven below. It returns'Britain', 'Germany', or 'Other country' depending
on the value of dialcode

‘CASE di al code WHEN 44 THEN 'Britain' WHEN 49 THEN ' Germany' ELSE ' Qther country' END

The case statement can be far more complex and involve several conditions.
CAST
cast specification

<cast specification> ::= CAST <left paren> <cast operand> AS <cast target>
<right paren>

<cast operand> ::= <val ue expression> | <inplicitly typed val ue specification>
<cast target> ::= <dommin nane> | <data type>

Specify adata conversion. Data conversion takes place automatically among variants of a general type. For example
numeric values are freely converted from one type to another in expressions.

Explicit type conversion is necessary in two cases. One case is to determine the type of a NULL value. The other
case isto force conversion for specia purposes. Vaues of data types can be cast to a character type. The exception
is BINARY and OTHER types. The result of the cast is the literal expression of the value. Conversely, a value of
a character type can be converted to another type if the character value is a literal representation of the value in the
target type. Specia conversions are possible between numeric and interval types, which are described in the section
covering interval types.

The examples bel ow show examples of cast with their result:

CAST (NULL AS TI MESTAWP)

CAST (' 199 ' AS INTEGER) = 199

CAST ('tRue ' AS BOOLEAN) = TRUE

CAST (I NTERVAL '2' DAY AS | NTEGER) = 2

CAST (' 1992-04-21' AS DATE) = DATE '1992-04-21'

NEXT VALUE FOR
next value expression
<next val ue expression> ::= NEXT VALUE FOR <sequence generator nane>

Return the next value of a sequence generator. This expression can be used as a select list element in queries, or in
assignments to table columns in data change statements. If the expression is used more than once in asingle row that

93

HyperS@L Data Access and Change

is being evaluated, the same value is returned for each invocation. After evaluation of the particular row is complete,
the sequence generator will return a different value from the old value. The new value is generated by the sequence
generator by adding the increment to the last value it generated. In the example below:

‘I NSERT | NTO MYTABLE(COL1, COL2) VALUES 2, NEXT VALUE FOR MYSEQUENCE

value expression
value expression

<val ue expression> ::= <nuneric value expression> | <string value expression>
| <datetime value expression> | <interval value expression> | <bool ean val ue
expression> | <row val ue expressi on>

An expression that returns avalue. The value can be asingle value, or arow consisting more than one value.
numeric value expression
numeric value expression

<nuneric val ue expression> ::= <ternk | <nuneric val ue expression> <plus sign>
<term> | <numeric val ue expression> <m nus sign> <ternp

<termpr ::= <factor> | <ternp <asterisk> <factor> | <ternt <solidus> <factor>
<factor> ::= [<sign>] <nuneric primry>
<nuneric primary> ::= <val ue expression primry> | <nuneric value function>

Specify a numeric value. The BNF indicates that <ast eri sk> and <sol i dus> (the operators for multiplication
and division) have precedence over <m nus si gn>and <pl us si gn>.

numeric value function
numeric value function

<nuneric value function> ::= <position expression> | <extract expression> |
<l ength expression> ...

Specify afunction yielding a value of type numeric. The supported numeric value functions are listed and described
inthe Built In Functions chapter.

string value expression

string value expression

<string val ue expression> ::= <string concatenation> | <string factor>
<string factor> ::= <value expression primary> | <string value function>
<string concatenation> ::= <string val ue expressi on> <concatenati on operator>

<string factor>
<concatenation operator> ::= ||

Specify a character string value, a binary string value, or a bit string value. The BNF indicates that a string value
expression can be formed by concatenation of two or more <val ue expressi on pri mary>. Thetypes of the

94

HyperS@L Data Access and Change

<val ue expressi on pri mary> elements must be compatible, that is, all must be string, or binary or bit string
values.

character value function
string value function
<string value function> ::= ...

Specify a function that returns a character string or binary string. The supported character value functions are listed
and described in the Built In Functions chapter.

datetime value expression
datetime value expression

<datetine val ue expression> ::= <datetinme tern> | <interval value expression>
<plus sign> <datetinme ternr | <datetime val ue expressi on> <plus sign> <interval
ternr | <datetime val ue expression> <m nus sign> <interval ternp

<datetine term ::= <datetine factor>

<datetine factor> ::= <datetime primary> [<tine zone>]

<datetine primary> ::= <val ue expression primary> | <datetine value function>
<time zone> ::= AT <tinme zone specifier>

<tinme zone specifier> ::= LOCAL | TIME ZONE <interval primry>

Specify a datetime value. Details are described in the SQL Language chapter.

datetime value function

datetime value function

<datetine value function> ::= ...

Specify a function that returns a datetime value. The supported datetime value functions are listed and described in
the Built In Functions chapter.

interval term

interval value expression

<interval value expression> ::= <interval term | <interval value expression
1> <plus sign> <interval term 1> | <interval value expression 1> <m nus sign>
<interval term 1> | <left paren> <datetine value expression> <mnus sign>

<datetine ternms <right paren> <interval qualifier>

<interval termr ::= <interval factor> | <interval term 2> <asterisk> <factor>
| <interval term 2> <solidus> <factor> | <ternp <asterisk> <interval factor>

<interval factor> ::=[<sign>] <interval prinary>

<interval primary> ::= <value expression primary> [<interval qualifier>] |
<interval value function>

95

HyperS@L Data Access and Change

<interval value expression 1> ::= <interval value expression>

<interval ternp

<interval term1> ::
<interval term2> ::= <interval terne

Specify an interval value. Details are described in the SQL Language chapter.

interval absolute value function

interval value function

<interval value function> ::= <interval absolute value function>

<interval absolute value function> ::= ABS <l eft paren> <interval val ue expres-
sion> <right paren>

Specify a function that returns the absolute value of an interval. If the interval is negative, it is negated, otherwise
the original valueis returned.

boolean value expression
boolean value expression

<bool ean val ue expression> ::= <bool ean tern> | <bool ean val ue expression> OR
<bool ean terne

<bool ean ternr ::= <bool ean factor> | <bool ean ternm> AND <bool ean factor>
<bool ean factor> ::= [NOT] <bool ean test>

<bool ean test> ::= <boolean primary> [IS [NOT] <truth value>]

<truth value> ::= TRUE | FALSE | UNKNOMN

<bool ean primary> ::= <predicate> | <bool ean predi cand>

<bool ean predi cand> ::= <parenthesized bool ean val ue expression> | <nonparen-
t hesi zed val ue expression prinmary>

<par ent hesi zed bool ean val ue expression> ::= <left paren> <bool ean val ue ex-
pressi on> <right paren>

Specify a boolean value.

Predicates

Predicates are conditions with two sides and evaluate to a boolean value. The left side of the predicate, the <r ow
val ue predi cand>, isthe common element of all predicates. This element is a generalisation of both <val ue
expr essi on>, whichisascalar, and of <explicit row val ue constructor>, whichisarow. Thetwo
sides of a predicate can be split in CASE statements where the <r ow val ue predi cand> is part of multiple
predicates.

The number of fieldsin all <row val ue predi cand> used in predicates must be the same and the types of the
fieldsin the same position must be compatible for comparison. If either of these conditions does not hold, an exception
israised. The number of fieldsin arow is called the degree.

96

HyperS@L Data Access and Change

In many types of predicates (but not all of them), if the<r ow val ue predi cand> evaluatesto NULL, the result
of the predicate is UNKNOWN. If the <r ow val ue predi cand> has more than one element, and one or more
of the fields evaluate to NULL, the result depends on the particular predicate.

comparison predicand
comparison predicate
<conpari son predi cate> ::= <row val ue predi cand> <conp op> <row val ue predi cand>

<conp op> ::= <equals operator> | <not equal s operator> | <less than operator>
| <greater than operator> | <less than or equals operator> | <greater than or
equal s operator>

Specify a comparison of two row values. If either <r ow val ue predi cand> evaluatesto NULL, the result of
<conpari son predi cat e>isUNKNOWN. Otherwise, theresult is TRUE, FALSE or UNKNOWN.

If the degree of <r ow val ue predi cand> islarger than one, comparison is performed between each field and
the corresponding field in the other <r ow val ue pr edi cand> from left to right, one by one.

When comparing two elements, if either field is NULL then the result is UNKNOWN.

For <equal s oper at or >, if the result of comparison is TRUE for all field, the result of the predicate is TRUE. If
theresult of comparisonisFALSE for onefield, theresult of predicateisSFALSE. Otherwisetheresult isUNKNOWN.

The <not equal s operat or> istrandated to NOT (<row val ue predicand> = <row val ue
predi cand>) .

The<l ess than or equal s operat or >istrandatedto (<r ow val ue predi cand> = <row val ue
predi cand>) OR (<row val ue predi cand> < <row val ue predi cand>).The<greater than
or equal s oper at or > istranslated similarly.

For the <l ess than operator>and<greater than operator>,if two fields a a given position are
equal, then comparison continues to the next field. Otherwise, the result of the last performed comparison is returned
asthe result of the predicate. This meansthat if the first field isNULL, the result is always UNKNOWN.

Thelogic that governsNULL valuesand UNKNOWN result isasfollows: Supposethe NULL valueswere substituted
by arbitrary real values. If substitution cannot change the result of the predicate, then the result is TRUE or FALSE,
based on the existing non-NULL values, otherwise the result of the predicate is UNKNOWN.

The examples of comparison given below use literals, but the literals actually represent the result of evaluation of
Some expression.

. 4) = (1, 4)) 1S TRUE
. 4) = (1, 5)) 1S FALSE
, 4) < (1, 2, 3, 4) IS FALSE

1 3
1 3
1, 3
1, 2, 3, 4) < (1, 2, 3, 5)) IS TRUE
N 1
N 1
N 1

NENEN
w w w

AN |

, NULL) = (NULL, 1, NULL)) IS UNKNOWN

, NULL) = (NULL, 2, NULL)) IS FALSE

, NULL) <> (NULL, 2, NULL)) IS TRUE

NULL, 1, 2) <all operators> (NULL, 1, 2)) |S UNKNOMAN

1, NULL, ...) < (1, 2, ...)) 1S UNKNOAN

1, NULL, ...) < (2, NULL, ...)) IS TRUE

2, NULL, ...) < (1, NULL, ...)) IS FALSE
BETWEEN

between predicate

97

HyperS@L Data Access and Change

<bet ween predicate> ::= <row val ue predi cand> <between predicate part 2>

<between predicate part 2> ::=[NOTI' | BETWEEN [ASYMMETRIC | SYMMETRIC] <row
val ue predi cand> AND <r ow val ue predi cand>

Specify arange comparison. The defaultisASYMMETRIC. Theexpression X BETWEEN Y AND Zisequivaent to
(X >= Y AND X <= Z).Thereforeif Y > Z, the BETWEEN expression isnever true. The expression X BETWEEN
SYMMETRIC Y AND Zisequivaentto (X >= Y AND X <= Z) OR (X >= Z AND X <= Y).The
expresson Z NOT BETWEEN . .. isequivalentto NOT (Z BETWEEN .. .).If any of thethree<r ow val ue
pr edi cand> evaluatesto NULL, the result is UNKNOWN.

IN

in predicate

<in predicate> ::= <row value predicand> [NOT'] IN <in predi cate val ue>

<in predicate value> ::= <tabl e subquery> | <left paren> <in value |ist> <right
par en>

| <left paren> UNNEST <l eft paren> <array val ue expressi on> <right paren> <ri ght
par en>

<in value list> ::= <row value expression> [{ <comm> <row val ue expres-
sion> }...]

Specify a quantified comparison. The expression X NOT IN Y is equivaenttoNOT (X IN Y).The(<in
val ue |ist>) isconvertedinto atable with one or more rows. The expression X | N Yisequivalentto X =
ANY Y,whichisa<quanti fied conpari son predicate>.

If the<t abl e subquer y> returns no rows, theresult is FALSE. Otherwisethe <r ow val ue predi cand>is
compared one by one with each row of the <t abl e subquery>.

If the comparisonis TRUE for at least onerow, theresultis TRUE. If the comparison is FALSE for all rows, the result
is FALSE. Otherwise the result is UNKNOWN.

HyperSQL supports an extension to the SQL Standard to allow an array to be used in the <in predicate value>. This
isintended to be used with prepared statements where a variable length array of values can be used as the parameter
value for each call. The example below shows how thisis used.

‘SELECI’ * from customer where firstnane in (UNNEST(?)) ‘

LIKE

like predicate

<like predicate> ::= <character like predicate> | <octet |ike predicate>
<character like predicate> ::= <row value predicand> [NOT] LIKE <character

pattern> [ESCAPE <escape character>]

<character pattern> ::= <character val ue expressi on>
<escape character> ::= <character val ue expressi on>
<octet like predicate> ::= <row value predicand> [NOT] LIKE <octet pattern>

[ESCAPE <escape octet>]

98

HyperS@L Data Access and Change

<octet pattern> ::= <hinary val ue expression>
<escape octet> ::= <binary val ue expressi on>

Specify a pattern-match comparison for character or binary strings. The <r ow val ue predi cand> is aways
a<string value expression> of character or binary type. The <char act er pattern> or <oct et
pattern>isa<string val ue expressi on> in which the underscore and percent characters have special
meanings. The underscore means match any one character, while the percent means match a sequence of zero or more
characters. The<escape char act er >or<escape oct et >isasoa<stri ng val ue expressi on> that
evaluates to a string of exactly one character length. If the underscore or the percent is required as normal characters
in the pattern, the specified <escape char act er > or <escape oct et > can be used in the pattern before the
underscore or the percent. The<r ow val ue predi cand> iscompared withthe<char act er pattern>and
the result of comparison is returned. If any of the expressions in the predicate evaluates to NULL, the result of the
predicateis UNKNOWN. The expression A NOT LI KE Bisequivalentto NOT (A LI KE B) . If thelength of the
escapeisnot 1 or it is used in the pattern not immediately before an underscore or a percent character, an exception
israised.

ISNULL

null predicate

<null predicate> ::= <row value predicand> IS [NOT] NULL

Specify atest for anull value. The expression X |'S NOT NULL isNOT equivaentto NOT (X |'S NULL) if the
degree of the<r ow val ue predi cand>islargerthan 1. Therulesare: If dl fieldsarenull, X 1 S NULL isTRUE
and X 1'S NOT NULL isFALSE. If only somefieldsarenull,bothX 1'S NULL and X | S NOT NULL are FALSE.
If al fieldsarenot null, X 1' S NULLisFALSEand X IS NOT NULL isTRUE.

ALL and ANY

guantified comparison predicate

<quantified conparison predicate> ::= <row val ue predi cand> <conmp op> <quanti -
fier> <table subquery>

<quantifier> ::= <all> | <sone>
<all> ::= ALL
<sone> ::= SOME | ANY

Specify a quantified comparison. For a quantified comparison, the <r ow val ue predi cand> is compared one
by one with each row of the<t abl e sub query>.

If the <t abl e subquer y> returns no rows, then if ALL is specified the result is TRUE, but if SOVE or ANY is
specified the result is FALSE.

If ALL is specified, if the comparison is TRUE for all rows, the result of the predicate is TRUE. If the comparison is
FALSE for at least one row, the result is FAL SE. Otherwise the result is UNKNOWN.

If SOVE or ANY is specified, if the comparison is TRUE for at least one row, theresult is TRUE. If the comparisonis
FALSE for all rows, theresult is FALSE. Otherwisetheresultis UNKNOWN. Note that the IN predicate is equivalent
tothe SOME or ANY predicate using the <equal s oper at or >,

In the examples below, the date of an invoice is compared to holidaysin agiven year. In the first example the invoice
date must equal one of the holidays, in the second exampleit must be later than all holidays (later than thelast holiday),

99

HyperS@L Data Access and Change

in the third example it must be on or after some holiday (on or after the first holiday), and in the fourth example, it
must be before al holidays (before the first holiday).

i nvoi ce_date = SOVE (SELECT hol i day_dat e FROM hol i days)
invoi ce_date > ALL (SELECT hol i day_dat e FROM hol i days)
i nvoi ce_date >= ANY (SELECT hol i day_dat e FROM hol i days)
invoi ce_date < ALL (SELECT hol i day_dat e FROM hol i days)

EXISTS
exists predicate
<exists predicate> ::= EXISTS <tabl e subquery>

Specify atest for a non-empty set. If the evaluation of <t abl e subquer y> resultsin one or more rows, then the
expression is TRUE, otherwise FALSE.

UNIQUE
unique predicate
<uni que predicate> ::= UNl QUE <tabl e subquery>

Specify atest for the absence of duplicate rows. Theresult of thetest is either TRUE or FALSE (never UNKNOWN).
Therowsof the<t abl e subquer y> that contain one or more NULL values are not considered for thistest. If the
rest of the rows are distinct from each other, the result of the test is TRUE, otherwiseit is FALSE. The distinctness of
rows X and Y istested with the predicate X 1 S DI STI NCT FROM Y.

MATCH
match predicate

<mat ch predicate> ::= <row val ue predi cand> MATCH[UNIQUE] [SIMPLE | PARTI AL
| FULL] <table subquery>

Specify atest for matching rows. The default is MATCH SIMPLE without UNIQUE. The result of the test is either
TRUE or FALSE (never UNKNOWN).

Theinterpretation of NULL valuesis different from other predicates and quite counter-intuitive. If the<r ow val ue
pr edi cand>isNULL, or al of itsfieldsare NULL, the result is TRUE.

Otherwise, the<r ow val ue predi cand> iscompared with each row of the<t abl e subquery>.

If SIMPLE is specified, if somefield of <r ow val ue predi cate>isNULL, theresultis TRUE. Otherwise if
<row val ue predi cat e> isequal tooneor morerowsof <t abl e subquer y> theresultisTRUE if UNIQUE
isnot specified, or if UNIQUE is specified and only one row matches. Otherwise the result is FALSE.

If PARTIAL is specified, if the non-null values <r ow val ue predi cat e> are equal to those in one or more
rows of <t abl e subquer y> theresult is TRUE if UNIQUE is not specified, or if UNIQUE is specified and only
one row matches. Otherwise the result is FALSE.

If FULL is specified, if some field of <r ow val ue predi cat e>isNULL, the result is FALSE. Otherwise if
<row val ue predi cat e>isequal tooneor morerowsof <t abl e subquer y>theresultisTRUEif UNIQUE
is not specified, or if UNIQUE is specified and only one row matches.

Note that MATCH can also used be used in FOREIGN KEY constraint definitions. The exact meaning is described
inthe Schemas and Database Objects chapter.

100

HyperS@L Data Access and Change

OVERLAPS
overlaps predicate
<overl aps predicate> ::= <row val ue predi cand> OVERLAPS <row val ue predi cand>

Specify atest for an overlap between two datetime periods. Each <r ow val ue pr edi cand> must havetwo fields
and the fields together represent a datetime period. So the predicates is dwaysin theform (X1, X2) OVERLAPS
(Y1, Y2).Thefirstfieldisawaysadatetime value, while the second field is either a datetime value or an interval
value.

If the second valueis an interval value, it is replaced with the sum of the datetime value and itself, for example (X1,
X1 + X2) OVERLAPS (Y1, Y1 + Y 2).

If any of the valuesis NULL, the result is UNKNOWN.

The expression is true if there is there is any overlap between the two datetime periods. In the example below, the
period is compared with aweek long period ending yesterday.

(startdate, enddate) OVERLAPS (CURRENT_DATE - 7 DAY, CURRENT_DATE - 1 DAY) |

ISDISTINCT
isdistinct predicate

<di stinct predicate> ::= <row value predicand> IS [NOT] DI STINCT FROM <row
val ue predi cand>

Specify a test of whether two row values are distinct. The result of the test is either TRUE or FALSE (never UN-
KNOWN). The degreethetwo <r ow val ue pr edi cand> must bethe same. Eachfield of thefirst <r ow val ue
pr edi cand> iscompared to the field of the second <r ow val ue pr edi cand> at the same position. If onefield
isNULL and the other isnot NULL, or if the elements are NOT equal, then the result of the expression is TRUE. If
no comparison result is TRUE, then the result of the predicate is FALSE. The expression X | S NOT DI STI NCT
FROM YisequivaenttoNOT (X 1S DI STI NCT FORM Y) . Thefollowing check returns true if startdate is not
equal to enddate. It also returnstrueif either startdate or enddateis NULL. It returnsfalse in other cases.

\startdate I'S DI STINCT FROM enddat e

Other Syntax Elements

sear ch condition

search condition

<search condition> ::= <bool ean val ue expressi on>

Specify acondition that is TRUE, FALSE, or UNKNOWN. A search condition is often a predicate.
PATH

path specification

<path specification> ::= PATH <schema nane |ist>

<schema name list> ::= <schema nane> [{ <comma> <schema nane> }...]

101

HyperS@L Data Access and Change

Specify an order for searching for a user-defined SQL-invoked routine. Thisis not currently supported by HyperSQL.
routine invocation

routine invocation

<routine invocation> ::= <routine name> <SQ. argunent |ist>

<routine name> ::= [<schemm name> <period>] <qualified identifier>

<SQ@. argunent list> ::= <left paren> [<SQ argunment> [{ <comm> <SQ. argu-
ment>1}...]] <right paren>

<SQL argument > ::= <val ue expression> | <target specification>
Invoke an SQL-invoked routine. Examples are given in the SQL-Invoked Routines chapter.
COLLATE

collate clause

<col | ate clause> ::= COLLATE <col |l ati on name>

Specify adefault collation. Thisis not currently supported by HyperSQL

CONSTRAINT

constraint name definition

<constraint nane definition> ::= CONSTRAI NT <constraint name>

<constraint characteristics> ::= <constraint check tinme>[[NOT | DEFERRABLE]
| [NOT] DEFERRABLE [<constraint check tinme>]

<constraint check time> ::= N TIALLY DEFERRED | | NI TI ALLY | MVEDI ATE

Specify the name of a constraint and its characteristics. Thisis an optional element of CONSTRAINT definition, not
yet supported by HyperSQL.

aggregate function

aggregate function

<aggregate function> ::= COUNT <left paren> <asterisk> <right paren> [<filter
clause>] | <general set function> [<filter clause>]
<general set function> ::= <set function type> <left paren> [<set quantifier>]

<val ue expressi on> <ri ght paren>

<set function type> ::= <conputational operation>

<conputational operation>::= AVG| MAX| MN| SUM| EVERY | ANY | SOVE | COUNT
| STDDEV_POP | STDDEV_SAMP | VAR SAMP | VAR POP

<set quantifier> ::= DI STINCT | ALL

<filter clause> ::= FILTER <l eft paren> WHERE <search conditi on> <right paren>

102

HyperS@L Data Access and Change

Specify avalue computed from acollection of rows. An aggregate functionisused exclusively ina<query speci -
fi cati on>anditsusetransformsanormal query into an aggregate query returning asingle row instead of the group
of multiple rows that the original query returns. For example, SELECT acol uimm <t abl e expressi on>isa
query that returnsthe value of acolumn for all the rowsthe satisfy the given condition. But SELECT MAX(acol umm)
<t abl e expressi on> returns only one row, containing the largest value in that column. The query SELECT
COUNT(*) <tabl e expression> returnsthe count of rows, while SELECT COUNT(acol utm) <t abl e
expr essi on> returns the count of rowswhereacol urm 1S NOT NULL.

If the<t abl e expressi on>isagrouped table, the aggregate function returns the result of the COUNT or <conmt
put ati onal operati on> for each group. In this case the result has the same number of rows as the original
query. For example SELECT SUM acol um) <t abl e expressi on>when <t abl e expressi on>hasa
GROUP BY clause, returns the sum of values for acol umm in each group.

The AVG and SUM operations can be performed on numeric expressions only. AV G returns the average value, while
SUM returnsthe sum of all non-null values. MAX and MIN return the minimum or the maximum value. If all valuesare
NULL, theoperationsreturn NULL . The COUNT(*) operation returnsthe count of all values, while COUNT(<val ue
expr essi on>) returnsthe count of non-NULL values.

The EVERY, ANY and SOME operations can be performed on boolean expressions only. EVERY returns TRUE if
all the values are TRUE, otherwise FALSE. ANY and SOME are the same operation and return TRUE if one of the
valuesis TRUE, otherwise it returns FALSE.

The other operations perform the statistical functions STDDEV_POP, STDDEV_SAMP, VAR_SAMP, VAR_POP
on numeric values. NULL values are ignored in calculations.

User defined aggregate functions can be defined and used instead of the built-in aggregate functions. Syntax and
examples are given in the SQL-Invoked Routines chapter.

sort specification list
sort specification list

<sort specification list> ::= <value expression> [ASC | DESC] [NULLS FIRST |
NULLS LAST]

Specify asort order. A sort operation is performed on theresult of a<query expr essi on>or<query speci -
fi cati on>and sortstheresult accordingto oneor more<val ue expr essi on>. The<val ue expressi on>
isusually a single column of the result, but in some cases it can be a column of the <t abl e expr essi on> that
isnot used in the select list.

Data Access Statements

HyperSQL fully supports all of SQL-92 data access statements, plus some additions from SQL:2008. Due to time
constraints, the current version of this Guide does not cover the subject fully. Y ou are advised to consult an SQL book
such as the recent O'Reilly title "SQL and Relational Theory" by C. J. Date.

Database queries are data access statements. The most commonly used data access statement isthe SELECT statement,
but there are other statements that perform asimilar role. Data access statements access tables and return result tables.
The returned result tables are falsely called result sets, as they are not necessarily sets of rows, but multisets of rows.

Result tables are formed by performing thefoll owing operations on base tables and views. These operationsareloosely
based on Relational Algebra

JOIN operations

SET and MULTISET operations

103

HyperS@L Data Access and Change

SELECTION

PROJECTION

COMPUTING

COLUMN NAMING

GROUPING and AGGREGATION

SELECTION AFTER GROUPING OR AGGREGATION
SET and MULTISET (COLLECTION) OPERATIONS
ORDERING

SICING

Conceptually, the operations are performed one by one in the above order if they apply to the given data access
statement. In the example below a simple select statement is made more complex by adding various operations.

CREATE TABLE atable (a INT, b INT, ¢ INT, d INT, e INT, f INT);

/* in the next SELECT, no join is perfornmed and no further operation takes place */

SELECT * FROM at abl e

/* in the next SELECT, selection is perforned by the WHERE cl ause, with no further action */
SELECT * FROM atable WHERE a + b = ¢

/* in the next SELECT, projection is perforned after the other operations */

SELECT d, e, f FROMatable WHERE a + b = ¢

/* in the next SELECT, conputation is perfornmed after projection */

SELECT (d + e) / f FROMatable WHERE a + b = ¢

/* in the next two SELECT statenents, colum naming is perforned in different ways*/
SELECT (a +e) /| f AScalc, f AS div FROM atable WHERE a + b = ¢

SELECT dcol, ecol, fcol FROM atabl e(acol, bcol, ccol, dcol, ecol, fcol) WHERE acol + bcol = ccol
/* in the next SELECT, both grouping and aggregation is perfornmed */

SELECT d, e, SUMf) FROM atable GROUP BY d, e

/* in the next SELECT, selection is perforned after grouping and aggregation is performed */
SELECT d, e, SUMf) FROM atable GROUP BY d, e HAVING SUMf) > 10

/* in the next SELECT, a UNNON is perforned on two selects fromthe sane table */

SELECT d, e, f FROM atable WHERE d = 3 UNI ON SELECT a, b, ¢ FROM atabl e WHERE a = 30

/* in the next SELECT, ordering is perfornmed */

SELECT (a + e) /| f AScalc, f AS div FROM atable WHERE a + b = ¢ ORDER BY calc DESC, div NULLS
LAST

/* in the next SELECT, slicing is perforned after ordering */

SELECT * FROM atable WHERE a + b = ¢ ORDER BY a FETCH 5 ROAS ONLY

The next sections discuss various types of tables and operations involved in data access statements.

Table

In data access statements, a table can be a database table (or view) or an ephemeral table formed for the duration of
the query. Some types of table are <table primary> and can participate in joins without the use of extra parentheses.
The BNF in the Table Primary section below lists different types of <table primary>:

Tables can aso be formed by specifying the values that are contained in them:

<tabl e val ue constructor> ::= VALUES <row val ue expression |ist>
<row val ue expression list> ::= <table row val ue expression> [{ <comma> <table
row val ue expression> }...]

104

HyperS@L Data Access and Change

In the example below a table with two rows and 3 columns is constructed out of some values:

\VALUES (12, 14, null), (10, 11, CURRENT_DATE)

When atable isused directly in a UNION or similar operation, the keyword TABLE is used with the name:
<explicit table> ::= TABLE <table or query name>

In the examples below, all rows of the two tables are included in the union. The keyword TABLE is used in the first
example. The two examples below are equivalent.

TABLE at abl e UNI ON TABLE anot hert abl e
SELECT * FROM at abl e UNI ON SELECT * FROM anot hert abl e

Query Specification

A query specification is a SELECT statement. It is the most common form of <deri ved table>.A <tabl e
expr essi on> isabasetable, aview or any form of allowed derived table. The SELECT statement performs pro-
jection, naming, computing or aggregation on the rows of the <t abl e expr essi on>.

<query specification> ::= SELECT [DI STINCT | ALL] <select list> <table ex-
pressi on>

<select list> ::= <asterisk> | <select sublist> [{ <coma> <select sub-
list>3}...]

<sel ect sublist> ::= <derived colum> | <qualified asterisk>

<qual ified asterisk> ::= <asterisked identifier chain> <period> <asterisk>
<asterisked identifier chain> ::= <asterisked identifier> [{ <period> <aster-

i sked identifier>}...]

<asterisked identifier> ::= <identifier>
<derived colum> ::= <val ue expression> [<as clause>]
<as clause> ::= [AS] <colum nane>

The qualifier DISTINCT or ALL apply to the results of the SELECT statement after all other operations have been
performed. ALL simply returns the rows, while DISTINCT compares the rows and removes the duplicate ones.

Projection is performed by the<sel ect |i st >.

A single <ast er i sk> means all columns of the <t abl e expr essi on> areincluded, in the same order as they
appear inthe <t abl e expr essi on>. An asterisk qualified by atable name means al the columns of the qualifier
table name are included.

A derived column isa<val ue expressi on>, optionally named with the <as cl ause>. A <val ue ex-
pr essi on> can be many things. Common types include: the name of a column inthe <t abl e expr essi on>;
an expression based on different columns or constant values; a function call; an aggregate function; a CASE WHEN
expression.

Table Expression

A table expression is part of the SELECT statement and consists of the FROM clause with optional other clauses that
performs selection (of rows) and grouping from the table(s) in the FROM clause.

105

HyperS@L Data Access and Change

<tabl e expression> ::= <from clause> [<where clause>] [<group by clause>]
[<having cl ause>]

<fromclause> ::= FROM <table reference> [{ <comma> <table reference> }...]
<table reference> ::= <table primary> | <joined table>
<table primary> ::= <table or query nane> [[AS] <correlation nanme> [<left

paren> <derived colum list> <right paren>1]]

| <derived table> [AS] <correlation name> [<left paren> <derived columm
list> <right paren>]

| <lateral derived table> [AS] <correlation name> [<left paren> <derived
colum |ist> <right paren>]

| <collection derived table> [AS] <correlation name> [<left paren> <derived
colum Ilist> <right paren>]

| <table function derived table> [AS] <correlation nane> [<left paren>
<derived colum list> <right paren>]

| <parenthesized joined tabl e>

<where cl ause> ::= WHERE <bool ean val ue expressi on>

<group by cl ause> ::= GROUP BY [<set quantifier>] <grouping elenment>[{ <coma>
<grouping elenment> }...]

<havi ng cl ause> ::= HAVI NG <bool ean val ue expressi on>

The <f r om cl ause> contains one or more <t abl e r ef er ence> separated by commas. A table reference is
often atable or view name or ajoined table.

The<wher e cl ause> filtersthe rows of the table in the <from clause> and removes the rows for which the search
condition is not TRUE.

The<gr oup by cl ause>isacommaseparated list of columnsof thetableinthe<f r om cl ause> or expressions
based on the columns.

Whena<group by cl ause>isused, only the columnsused inthe<gr oup by cl ause> or expressions used
there, can be used in the <sel ect | i st >, together with any <aggr egat e f uncti on> on other columns. A
<group by cl ause> comparesthe rowsand groupstogether the rowsthat have the same valuesin the columns of
the<group by cl ause>.Thenany <aggr egat e functi on>inthe<sel ect |i st>isperformedoneach
group, and for each group, arow is formed that contains the values of the columns of the <gr oup by cl ause>
and the values returned from each <aggregate function>. In the first exanple below, a
sinmple colum reference is used in GROUP BY, while in the second exanple, an
expression i s used.

CREATE TABLE atable (a INT, b INT, ¢ INT, d INT, e INT, f INT);
SELECT d, e, f FROMatable WHERE a + b = ¢ GROUP BY d, e, f
SELECT d + e, SUMf) FROM atable WHERE a + b = ¢ GROUP BY d + e HAVING SUMf) > 2 ANDd + e > 4

A <havi ng cl ause> filtersthe rows of the table that is formed after applying the<gr oup by cl ause> using
its search condition. The search condition must be an expression based on the expressions in the GROUP BY list or
the aggregate functions used.

106

HyperS@L Data Access and Change

Table Primary

Table primary refers to different forms of table reference in the FROM clause.

The simplest form of reference is simply a name. This is the name of atable, a view, atransition table in a trigger
definition, or a query name specified in the WITH clause of aquery expression.

<tabl e or query nane> :.= <table nane> | <transition table nane> | <query nane>
A query expression that is enclosed in parentheses and returns from zero to many rowsisa<t abl e subquery>.
Ina<derived tabl e>the query expression is self contained and cannot reference the columns of other table
references.

<derived table> ::= <table subquery>

VWhen the word LITERAL is used before a <table subquery> it neans the query
expression can reference the colums of other table references that precede it.

<lateral derived table> ::= LATERAL <tabl e subquery>
UNNEST is similar to LATERAL, but instead of a query expression, and expression that returns an array is used.
This expression is converted into a table which has one column that contains the elements of the array, and, if WITH

ORDINALITY isused, asecond column that containstheindex of each element. The array expression usually contains
areference to a column of the table reference preceding the current table reference.

<col lection derived table> ::= UNNEST <left paren> <array value expression>
<right paren> [WTH ORDI NALI TY]

When TABLE isused in this context, it also converts an array value expression to a table, but this array must be the
result of a function call. A function that returns a MULTISET can also be used in this context and each row of the
multiset is expanded into arow of thetable.

<tabl e function derived table> ::= TABLE <l eft paren> <collection val ue expres-
sion> <right paren>

The column list that is specified for the table reference must contain names that are unique within the list
<derived colum list> ::= <colum name |ist>
<colum name list> ::= <columm nane> [{ <comma> <columm nane> }...]

A parenthesized joined table is simply ajoined table contained in parentheses. Joined tables are discussed below.

<parent hesized joined table> ::= <left paren> <parenthesized joined table>
<right paren> | <left paren> <joined table> <right paren>
Joined Table

Joins are operators with two table as the operands, resulting in athird table, called joined table. All join operators are
evaluated | eft to right, therefore, with multiplejoins, thetableresulting from the first join operator becomes an operand
of the next join operator. Parentheses can be used to group sequences of joined tables and change the eval uation order.
So if more than two tables are joined together with join operators, the end result is aso a joined table. There are
different types of join, each producing the result table in a different way.

CROSSJOIN

107

HyperS@L Data Access and Change

The simplest form of join is CROSS JOIN. The CROSS JOIN of two tablesis a table that has all the columns of the
first table, followed by all the columns of the second table, in the original order. Each row of thefirst tableis combined
with each row of the second table to fill the rows of the new table. If the rows of each table form a set, then the rows
of the CROSS JOIN table form the Cartesian product of the rows of the two table operands.

The CROSS JOIN can be expressed in two forms. Thefirst formisA CROSS JO N B. Thesecond formisA, B.
Thistype of joinis not generally very useful, asit returns large result tables.

UNION JOIN

The UNION JOIN has limited use in queries. The result table has the same columns as that of CROSS JOIN. Each
row of the first table is extended to the right with nulls and added to the new table. Each row of the second table is
extended to the left with nulls and added to the new table. The UNION JOIN isexpressed asA UNION JO N B.
This should not be confused with A UNI ON B, which is a set operation. Union join is for special applications and
is hot commonly used.

JOIN ...ON

The condition join is similar to CROSS JOIN, but a condition is tested for each row of the new table and the row is
created only if the condition istrue. Thisform of joinisexpressedasA JO N B ON (<search condition>).

Equijoinisacondition join in which the search condition is an equality condition between on or more pairs of columns
from the two table. Equijoin is the most commonly used type of join.

JOIN ... USING
NATURAL JOIN

Joins with USING or NATURAL keywords joins are similar to an equijoin but they cannot be replaced simply with
an equijoin. The new table is formed with the specified or implied shared columns of the two tables, followed by the
rest of the columns from each table. In NATURAL JOIN, the shared columns are al the column pairs that have the
same hame in the first and second table. In JOIN USING, only columns names that are specified by the USING clause
are shared. Thejoins are expressed asA NATURAL JO N B,andA JO N B USI NG (<coma separ at ed
colum nane |ist>).

The columns of the joined table are formed by the following procedures: In JOIN ... USING the shared columns are
added to the joined table in the same order as they appear in the column name list. In NATURAL JOIN the shared
columns are added to thejoined table in the same order asthey appear in thefirst table. In bother forms of join, the non-
shared columns of the first table are added in the order they appear in the first table, finally the non-shared columns
of the second table are added in the order they appear in the second table.

The type of each shared column of the joined table is based on the type of the columnsin the original tables. If the
original typesare not exactly the same, the type of the shared column isformed by type aggregation. Type aggregations
selects a type that can represent values of both aggregated types. Simple type aggregation picks one of the types.
For example SMALLINT and INTEGER, results in INTEGER, or VARCHAR(10) and VARCHAR(20) results in
VARCHAR(20). More complex type aggregation inherits properties from both types. For example DECIMAL(8) and
DECIMAL (6,2) resultsin DECIMAL (8,2).

OUTER JOIN
LEFT, RIGHT and FULL OUTER JOIN

The three qualifiers can be added to all types of JOIN apart from CROSS JOIN and UNION JOIN. First the new table
is populated with the rows from the original join. If LEFT is specified, al the rows from the first table that did not
make it into the new table are extended to the right with nulls and added to the table. If RIGHT is specified, all the
rows from the second table that did not make it into the new table are extended to the left with nulls and added to the

108

HyperS@L Data Access and Change

table. If FULL is specified, the addition of |eftover rows is performed from both the first and the second table. These
forms are expressed by prefixing the join specification with the given keyword. For example A LEFT OUTER JO N
B ON (<search condition>) or A NATURAL FULL OUTER JO N BorA FULL QUTER JON B
USI NG (<conmma separated colum nane |ist>).

Selection

Despite the name, selection has nothing to do with the list of columnsin a SELECT statement. In fact, it refers to
the search condition used to limit the rows that from a result table (selection of rows, not columns). In SQL, simple
selection isexpressed with aWHERE condition appended to asingle table or ajoined table. In some cases, this method
of selection isthe only method available. But when it is possible to perform the selection with join conditions, thisis
the better method, asit resultsin aclearer expression of the query.

Projection

Projection is selection of the columns from a simple or joined table to form a result table. Explicit projection is per-
formed in the SELECT statement by specifying the select column list. Some form of projection is also performed in
JOIN ... USING and NATURAL JOIN.

The joined table has columns that are formed according to the rules mentioned above. But in many cases, not al the
columns are necessary for the intended operation. If the statement is in the form, SELECT * FROM <joined table>,
then al the columns of <joined table> are returned. But normally, the columns to be returned are specified after the
SELECT keyword, separated from each other with commas.

Computed Columns

Intheselect list, itispossibleto use expressionsthat reference any columnsof <joined table>. Each of these expressions
forms a computed column. It is computed for each row of the result table, using the values of the columns of the
<joined table> for that row.

Naming

Naming is used to hide the original names of tables or table columns and to replace them with new namesin the scope
of the query. Naming is also used for defining names for computed columns.

Namingin Joined Table

Naming is performed by adding a new name after atable's real name and by adding alist of column names after the
new table name. Both table naming and column naming are optional, but table naming is required for column naming.
The expression A [AS] X (<commma separated columm name |ist>) meanstable A is used in the
guery expression astable X and its columns are named asin the given list. The original name A, or itsoriginal column
names, are not visible in the scope of the query. The BNF is given below. The<corr el ati on nane> can bethe
same or different from the name of thetable. The<deri ved col umtm |i st >isacommaseparated list of column
names. The degree of thislist must be equal to the degree of the table. The column namesin the list must be distinct.
They can be the same or different from the names of the table's columns.

<tabl e or query name> [[AS] <correlation nane> [<left paren> <derived col um
list> <right paren>]]

In the examples below, the columns of the original tables are named (a, b, ¢, d, g, f). The two queries are equivalent.
In the second query, the table and its columns are renamed and the new names are used in the WHERE clauses:

CREATE TABLE atable (a INT, b INT, ¢ INT, d INT, e INT, f INT);
SELECT d, e, f FROMatable WHERE a + b = ¢

109

HyperS@L Data Access and Change

‘SELECT X, ¥, z FROMatable ASt (u, v, w, X, v, z) WHERE U + v = w

Namingin Select List

Naming in the SELECT list logically takes place after naming in the joined table. The new names for columns are
not visible in the immediate query expression or query expression. They become visible in the ORDER BY clause
and in the result table that is returned to the user. Or if the query expression is used as a derived table in an enclosing
guery expression.

In the example below, the query is on the same table but with column renaming in the Select list. The new names are
used in the ORDER BY clause:

SELECT x + y AS xysum y + z AS yzsum FROM atable ASt (u, v, w, X, y, z) WHERE u + v = w ORDER
BY xysum yzsum

If the names xysumor yzsumare not used, the computed columns cannot be referenced in the ORDER BY list.
Name Resolution

In ajoined table, if a column name appears in tables on both sides then any reference to the name must use the table
name in order to specify which table is being referred to.

Grouping Operations
Grouping Operations

Grouping resultsin the elimination of duplicate rows. A grouping operation is performed after the operations di scussed
above. A ssimple form of grouping is performed by the use of DISTINCT after SELECT. This eliminates all the
duplicate rows (rows that have the same value in each of their columns when compared to another row). The other
form of grouping is performed with the GROUP BY clause. Thisform isusually used together with aggregation.

Aggregation

Aggregation is an operation that computes a single value from the values of acolumn over several rows. The operation
is performed with an aggregate function. The simplest form of aggregation is counting, performed by the COUNT
function.

Other common aggregate functions return the maximum, minimum and average value among the values in different
rows.

Set Operations

Set and Multiset Operations

Whilejoin operations generally result in laterally expanded tables, SET and COLLECTION operations are performed
on two tables that have the same degree and result in a table of the same degree. The SET operations are UNION,
INTERSECT and EXCEPT (difference). When each of these operations is performed on two tables, the collection
of rows in each table and in the result is reduced to a set of rows, by eliminating duplicates. The set operations are
then performed on the two tables, resulting in the new table which itself is a set of rows. Collection operations are
similar but the tables are not reduced to sets before or after the operation and the result is not necessarily a set, but
acollection of rows.

The set operationson two tablesA andB are: A UNI ON [DI STI NCT] B, A | NTERSECT [DI STI NCT] BandA
EXCEPT [DI STI NCT] B. Theresult tableisformed in the following way: The UNION operation adds all the rows
from A and B into the new table, but avoids copying duplicate rows. The INTERSECT operation copies only those

110

HyperS@L Data Access and Change

rows from each table that also exist in the other table, but avoids copying duplicate rows. The EXCEPT operation
copies those rows from the first table which do not exist in the second table, but avoids copying duplicate rows.

The collection operations are similar to the set operations, but can return duplicaterows. They are A UNI ON ALL B,
A | NTERSECT ALL Band A EXCEPT ALL B.TheUNION ALL operation adds all the rows from A and B into
the new table. The INTERSECT operation copies only those rows from each table that also exist in the other table. If
n copies of arows exists in one table, and m copies in the other table, the number of copiesin the result table is the
smaller of n and m. The EXCEPT operation copies those rows from the first table which do not exist in the second
table. If n copies of arow exist in the first table and m copies in the second table the number of copiesin the result
tableis n-m, or if n < m, then zero.

Query Expression

A query expression consists of an optional WITH clause and a query expression body. The WITH clause lists one or
more named ephemeral tablesthat can be referenced in the query expression body.

<query expression> ::= [<with clause>] <query expression body>

<with clause> ::= WTH <with |ist>

<with list> ::= <with list elenent> [{ <conma> <with list elenent>}...]
<with list elenent> ::= <query name> [<left paren> <with colum |ist> <right

paren>] AS <l eft paren> <query expression> <right paren>
<with colum list> ::= <colum nane |ist>

A query expression body refers to a table formed by using UNION and other set operations. The query expression
body is evaluated from left to right and the INTERSECT operator has precedence over the UNION and EXCEPT
operators. A simplified BNF is given below:

<query expression body> ::= <query ternm> | <query expression body> UN ON |
EXCEPT [ALL | DISTINCT] [<corresponding spec>] <query ternp

<query ternmr ::= <query primary> | <query term> |INTERSECT [ALL | DI STINCT]
[<corresponding spec>] <query ternp

<query primary>::=<sinple table>| <left paren> <query expressi on body> [<order
by clause>] [<result offset clause>] [<fetch first clause>] <right paren>

<sinpl e tabl e> ::= <query specification>| <table value constructor>| <explicit
tabl e> <explicit table> ::= TABLE <table or query nane>
<correspondi ng spec> ::= CORRESPONDING [BY <left paren> <colum name |ist>

<ri ght paren>]

A <query ternt and a<query primary> can be a SELECT statement, an <explicit table> ora
<t abl e val ue constructor>.

The CORRESPONDING clauseisoptional. If it is not specified, then the<query ter m> andthe<query pri -
mar y> must have the same number of columns. If CORRESPONDING is specified, the two sides need not have
the same number of columns. If no column list is used with CORRESPONDING, then al the column names that are
common in the tables on two sides are used in the order in which they appear in thefirst table. If acolumnslist is used,
it allows you to select only some columns of the tables on the left and right side to create the new table. In the example
below the columns named u and v from the two SELECT statements are used to create the UNION table.

'SELECT * FROM atabl e UNI ON CORRESPONDI NG BY (u, v) SELECT * FROM anot hertabl e |

111

HyperS@L Data Access and Change

The type of each column of the query expression is determined by combining the types of the corresponding columns
from the two participating tables.

Ordering

When the rows of the result table have been formed, it is possible to specify the order in which they are returned to the
user. The ORDER BY clause is used to specify the columns used for ordering, and whether ascending or descending
ordering is used. It can also specify whether NULL values are returned first or last.

SELECT x + y AS xysum y + z AS yzsum FROM atable ASt (u, v, w, X, y, z) WHERE u + v = w ORDER
BY xysum NULLS LAST, yzsum NULLS FI RST

The ORDER BY clause specifiesoneor more<val ue expr essi ons>. Thelist of rowsis sorted according to the
first<val ue expr essi on>. When somerows are sorted equal then they are sorted according to the next <val ue
expr essi on> and so on.

<order by clause> ::= ORDER BY <sort specification> [{ <comm> <sort speci-
fication> }...]
<sort specification> ::= <value expression> [ASC | DESC] [NULLS FIRST |

NULLS LAST]
Slicing

A different form of limiting the rows can be performed on the result table after it has been formed according to al the
other operations (selection, grouping, ordering etc.). Thisis specified by the FETCH ... ROWS and OFFSET clauses
of a SELECT statement. In this form, the specified OFFSET rows are removed from start of the table, then up to the
specified FETCH rows are kept and the rest of the rows are discarded.

<result offset clause> ::= OFFSET <offset row count> { ROW| RO\S }

<fetch first clause> ::= FETCH { FIRST | NEXT } [<fetch first row count>]
{ ROW| ROA5 } ONLY

<limt clause> ::= LIMT [<fetch first row count>]

A dlicing operation takes the result set that has been already processed and ordered. It then discards the specified
number of rows from the start of the result set and returns the specified number of rows after the discarded rows.

SELECT a, b FROM atable WHERE d < 5 ORDER BY absum OFFSET 3 FETCH 2 ROA5 ONLY
SELECT a, b FROM atable WHERE d < 5 ORDER BY absum OFFSET 3 LIMT 2 /* alternative keyword */

Data Change Statements

Delete Statement
DELETE FROM
delete statement: searched

<del ete statenent: searched> ::= DELETE FROM<target table>[[AS] <correl ation
nane>] [WHERE <search condition>]

Delete rows of atable. The search conditionisa<bool ean val ue expressi on> that isevaluated for each row
of the table. If the condition is true, the row is deleted. If the condition is not specified, al the rows of the table are

112

HyperS@L Data Access and Change

deleted. Infact, animplicit SELECT isperformed intheform of SELECT * FROM <t ar get tabl e> [WHERE
<search condi ti on>] and the selected rows are deleted. When used in JDBC, the number of rows returned by
theimplicit SELECT is returned as the update count.

If there are FOREIGN KEY constraints on other tables that reference the subject table, and the FOREIGN KEY
constraints have referential actions, then rows from those other tablesthat reference the del eted rows are either del eted,
or updated, according to the specified referential actions.

In the second example below the rows that have the maximum value for column A are deleted;

DELETE FROM T WHERE C > 5
DELETE FROM T AS TT WHERE TT. A = (SELECT MAX(A) FROM T)

Truncate Statement

TRUNCATE TABLE
truncate tabl e statement

<truncate table statement> ::= TRUNCATE TABLE <target table> [<identity col um
restart option>]

<identity colum restart option> ::= CONTINUE | DENTITY | RESTART | DENTITY

Delete all rows of atable without firing its triggers. This statement can only be used on base tables (not views). If the
table is referenced in a FOREIGN KEY constraint, the statement causes an exception. Triggers defined on the table
are not executed with this statement. The default for <i dentity col um restart option>isCONTI NUE
| DENTI TY. This means no change to the IDENTITY sequence of the table. If RESTART | DENTI TY is specified,
then the sequenceisreset to its start value.

TRUNCATE isfaster than ordinary DELETE. The TRUNCATE statement isan SQL Standard data change statement,

thereforeit is performed under transaction control and can be rolled back if the connection is not in the auto-commit
mode.

Insert Statement

INSERT INTO

insert statement

<insert statenment> ::= |INSERT INTO <target table> <insert colums and source>

<insert columms and source> ::= <from subquery> | <from constructor> | <from
def aul t >

<fromsubquery> ::=[<left paren> <insert colum list> <right paren>] [<over-

ride clause>] <query expression>

<from constructor> ::= [<left paren> <insert colum list> <right paren>]
[<override clause>] <contextually typed table val ue constructor>

<override clause> ::= OVERRI DI NG USER VALUE | OVERRI DI NG SYSTEM VALUE
<fromdefault> ::= DEFAULT VALUES
<insert colum list> ::= <colum nane |ist>

113

HyperS@L Data Access and Change

Insert new rows in atable. An INSERT statement inserts one or more rows into the table.

The specia form, | NSERT | NTO <t arget tabl e> DEFAULT VALUES can be used with tables which have
adefault value for each column.

With the other forms of INSERT, the optional (<i nsert col unmm |i st >) specifiesto which columns of the
table the new values are assigned.

Inoneform, theinserted valuesarefroma<query expr essi on>andall therowsthat arereturned by the<query
expr essi on> areinserted into the table. If the <query expr essi on> returns no rows, nothing is inserted.

In the other form, acommaseparated list of valuescalled <cont extual |y typed t abl e val ue construc-
t or > isused to insert one or more rows into the table. Thislist is contextually typed, because the keywords NULL
and DEFAULT can be used for the values that are assigned to each column of the table. The keyword DEFAULT
means the default value of the column and can be used only if thetarget column hasadefault value orisan IDENTITY
or GENERATED column of thetable.

The<overri de cl ause> must be used when avalueis explicitly assigned to a column that has been defined as
GENERATED ALWAYS AS IDENTITY. The clause, OVERRIDE SYSTEM VALUE means the provided values
are used for the insert, while OVERRIDING USER VALUE means the provided values are simply ignored and the
values generated by the system are used instead.

An array can be inserted into a column of the array type by using literals, by specifying a parameter in a prepared
statement or an existing array returned by query expression. The last example below inserts an array.

The rows that are inserted into the table are checked against all the constraints that have been declared on the table.
Thewhole INSERT operation failsif any row fails to inserted due to constraint violation. Examples:

I NSERT | NTO T DEFAULT VALUES /* all colums of T have DEFAULT cl auses */

INSERT INTO T (SELECT * FROM Z) /* table Z has the sane columms as table T */

INSERT INTO T (A B) VALUES ((1,2),(3,NULL), (DEFAULT,6)) /* three rows are inserted into table T
*/

I NSERT I NTO T VALUES 3, ARRAY['hot','cold']

Update Statement
UPDATE
update statement: searched

<update statement: searched> ::= UPDATE <target table> [[AS] <correlation
name>] SET <set clause list>[WHERE <search condition>]

Update rows of atable. An UPDATE statement selectsrowsfromthe<t ar get t abl e>using animplicit SELECT
statement formed in the following manner:

SELECT * FROM <target table> [[AS] <correlation nane>] [WHERE <search
condi tion>]

Then it appliesthe SET <set cl ause |i st > expression to each selected row.

If theimplicit SELECT returns no rows, no update takes place. When used in JDBC, the number of rows returned by
theimplicit SELECT is returned as the update count.

If there are FOREIGN KEY constraints on other tables that reference the subject table, and the FOREIGN KEY
constraints have referential actions, then rows from those other tables that reference the updated rows are updated,
according to the specified referential actions.

114

HyperS@L Data Access and Change

The rows that are updated are checked against all the constraints that have been declared on the table. The whole
UPDATE operation fails if any row violates any constraint.

set clauselist

set clause list

<set clause list> ::= <set clause> [{ <comma> <set clause> }...]

<set clause> ::= <nultiple columm assignment> | <set target> <equal s operator>

<updat e source>

<mul tiple colum assignhnent> ::= <set target |ist> <equals operator> <assi gnhed
r ow>
<set target list> ::= <left paren> <set target> [{ <comma> <set target> }...]

<right paren>

<assigned row> ::= <contextually typed row val ue expressi on>
<set target> ::= <colum nane>
<updat e source> :: = <val ue expressi on>| <contextually typed val ue specification>

Specify alist of assignments. Thisis used in UPDATE, MERGE and SET statements to assign values to a scalar or
row target.

Apart from setting a whole target to avalue, a SET statement can set individual elements of an array to new values.
The last example below shows this form of assignment to the array in the column named B.

In the examples given below, UPDATE statements with single and multiple assignments are shown. Note in the third
example, a SELECT statement is used to provide the update values for columns A and C, while the update value for
column B is given separately. The SELECT statement must return exactly one row . In this example the SELECT
statement refers to the existing value for column C in its search condition.

UPDATE T SET A = 5 WHERE . ..

UPDATE T SET (A, B) = (1, NULL) WHERE ...

UPDATE T SET (A, C = (SELECT X, Y FROMU WHERE Z = C), B = 10 WHERE ...
UPDATE T SET A = 3, B[3] = 'warm

Merge Statement

MERGE INTO
mer ge statement

<nerge statement> ::= MERGE INTO <target table> [[AS] <nerge correlation
nanme>] USING <table reference> ON <search condition> <nerge operation speci -
fication>

<nerge correlation nane> ::= <correl ati on nane>
<nmerge operation specification> ::= <merge when cl ause>. ..

<merge when clause> ::= <merge when matched clause> | <merge when not natched
cl ause>

<nmer ge when natched cl ause> ::= WHEN MATCHED THEN <nerge update specification>

115

HyperS@L Data Access and Change

<nmerge when not nmatched clause> ::= WHEN NOT MATCHED THEN <merge insert spec-
ification>

<mer ge update specification> ::= UPDATE SET <set clause |list>

<nmerge insert specification> ::= INSERT [<left paren> <insert colum Ilist>

<right paren>] [<override clause>] VALUES <nerge insert value |list>

<nerge insert value list>::= <left paren> <nerge i nsert value elenent>[{ <com
ma> <nerge insert value elenment> }...] <right paren>
<nerge insert value element> ::= <val ue expression> | <contextually typed val ue

speci fication>

Update rows, or insert new rowsinto the <t ar get t abl e>. The MERGE statement uses a second table, specified
by <t abl e r ef er ence>, to determine the rows to be updated or inserted. It is possible to use the statement only
to update rows or to insert rows, but usually both update and insert are specified.

The <sear ch condi ti on> matches each row of the <t abl e ref er ence> with each row of the <t ar get

t abl e>. If thetwo rows match then the UPDATE clauseis used to update the matching row of thetarget table. Those
rows of <t abl e ref er ence> that have no matching rows are then used to insert new rows into the <t ar get

t abl e>. Therefore, a MERGE statement can update between 0 and all the rows of the<t ar get t abl e> and can
insert between 0 and the number of therowsin <t abl e ref erence> intothe<t arget tabl e>.Ifany rowin
the<t ar get t abl e> matches morethan onerow in<t abl e ref er ence> acardinality error israised. On the
other hand, several rowsin the <t ar get t abl e> can matchesasinglerow in <t abl e ref er ence> without
any error. The constraints and referential actions specified on the database tables are enforced the same way as for
an update and an insert statement.

The MERGE statement can be used with only the WHEN NOT MATCHED clause asaconditional INSERT statement
that inserts arow if no existing rows match a condition.

In the first example below, the table originally containstwo rowsfor different furniture. The<t abl e r ef er ence>
isthe(VALUES(1, 'conference table'), (14, 'sofa'), (5, 'coffee table')) expression,
which evaluates to a table with 3 rows. When the x value for arow matches an existing row, then the existing row is
updated. When the x value does not match, the row is inserted. Therefore one row of tablet is updated from 'dining
table' to 'conference table', and two rows are inserted into table t. The second example uses a SELECT statement as
the source of the values for the MERGE.

In the third example, a new row in inserted into the table only when the primary key for the new row does not exist.
This exampl e uses parameters and should be executed as a JDBC PreparedStatement.

CREATE TABLE t (id INT PRI MARY KEY, description VARCHAR(100))

INSERT INTOt VALUES (1, 'dining table'), (2, 'deck chair')

MERGE | NTO t USI NG (VALUES(1, 'conference table'), (14, 'sofa'), (5, 'coffee table'))
AS val s(x,y) ONt.id = vals.x
WHEN MATCHED THEN UPDATE SET t.description = vals.y
WHEN NOT MATCHED THEN | NSERT VALUES vals.x, vals.y

MERGE INTO t USI NG (SELECT * FROM tt WHERE acol = 2) AS vals(x,y) ONt.id = vals.x
WHEN MATCHED THEN UPDATE SET t.description = vals.y
WHEN NOT MATCHED THEN | NSERT VALUES vals.x, vals.y

MERGE I NTO t USI NG (VALUES(CAST(? AS INT))) AS vals(x) ONt.id = vals.x
WHEN NOT MATCHED THEN | NSERT VALUES vals.x, ?

116

HyperS@L

Chapter 8. SQL-Invoked Routines
Fred Toussi, The HSQL Development Group

$Revision: 3643 $

Copyright 2010 Fred Toussi. Permission is granted to distribute this document without any alteration under
the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group to
distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2010-06-06 23:04:17 -0400 (Sun, 06 Jun 2010) $

SQL-invoked routines are functions and procedures called from SQL. HyperSQL 2.0 supports routines conforming
to two parts of the SQL Standard. Routines written in the SQL language are supported in conformance to SQL/PSM
(Persistent Stored Modules) specification. Routines written in Java are supported in (loose) conformance to SQL/JRT
specification. In addition, HyperSQL's previous non-standard support for calling Java routines without prior method
definition is retained and enhanced in the latest version by extending the SQL/JRT specification.

HyperSQL also supports user defined aggregate functions written in the SQL language. This feature is an extension
to the SQL Standard.

SQL -invoked routines are schema objects. Naming and referencing foll ows conventionscommonto all schemaobjects.
The same routine name can be defined in two different schemas and used with schema-qualified references.

A routineis either a procedure or afunction.
A function:

* isdefined with CREATE FUNCTION

» awaysreturns avaue

« does not modify the datain the database

* iscalled as part of an SQL statement

* can have parameters

* can be polymorphic

A procedure:

* isdefined with CREATE PROCEDURE
* can return one or more values

» can modify the datain the database

* iscaled separately, using the CALL statement
* can have parameters

* can be polymorphic

Definition of routine signature and characteristics, name resolution and invocation are al implemented uniformly for
routines written in SQL or Java.

117

HyperS@L SQL-Invoked Routines

SQL Language Routines (PSM)

The PSM (Persistent Stored Module) specification extends the SQL languageto allow definition of both SQL Function
and SQL procedure bodies with the same structure and the same control statements (such as conditional and loop
statements) with minor exceptions.

The routine body isa SQL statement. In its simplest form, the body is a single SQL statement. A simple example of
afunctionis given below:

CREATE FUNCTI ON an_hour _before (t TI MESTAWP)
RETURNS Tl MESTAMP
RETURN t - 1 HOUR

An example of the use of the function in an SQL statement is given below:

‘SELECT an_hour _before(event _timestanp) AS notification_tinmestanp, event_name FROM events;

A simple example of a procedureis given below:

CREATE PROCEDURE new_custoner (firstnane VARCHAR(50), | astname VARCHAR(50))
MODI FI ES SQL DATA
I NSERT | NTO CUSTOVERS VALUES (DEFAULT, firstnane, |astname, CURRENT_TI MESTAMP)

The procedure inserts arow into an existing table with the definition given below:

CREATE TABLE custoners(id | NTEGER GENERATED BY DEFAULT AS | DENTITY, firstnane VARCHAR(50),
| ast name VARCHAR(50), added TI MESTAMWP);

An example of the use of the procedure is given below:

‘CALL new_customer (' JOHN , 'SMTH);

The routine body is often a compound statement. A compound statement can contain one or more SQL statements,
which can include control statements, as well as nested compound statements.

Routine Statements

Thefollowing SQL Statements can be used only in routines.
<handl er decl arati on>

<assi gnnent st at enent >

<conpound st at enent >

<case statenent>

<if statenent>

<whi | e statement>

<repeat statenent>

<for statenent>

<l oop statenent>

<iterate statenent

118

HyperS@L SQL-Invoked Routines

<l eave statement>

<si gnal statenent>

<resi gnal statenent>

<return statenent>

<sel ect statenent: single row
Thefollowing SQL Statements can be used in procedures but not in functions.
<cal | statenent>

<del et e statenent >

<insert statenent>

<updat e statenent >

<mer ge statement>

As shown in the examples below, the formal parameters and the variables of the routine can be used in statements,
similar to the way a column reference is used.

Compound Statement

A compound statement is enclosed in a BEGIN / END block with optional labels. It can contain one or more <SQL
vari abl e decl aration> or <handl er decl arati on> before at least one SQL statement. The BNF is
given below:

<conmpound statenent> ::= [<beginning |label> <colon>] BEGA N [[NOI] ATOM C]
[{<SQL variable declaration> <senmicolon>} ...] [{<handler declaration> <sem -
colon>}...] {<SQ. procedure statenent> <semicolon>} ... END [<ending | abel >]

An example of asimple compound statement body isgiven below. It performsthe common task of inserting related data
into twotable. The IDENTITY valuethat isautomatically inserted in thefirst tableisretrieved using the IDENTITY ()
function and inserted into the second table.

CREATE PROCEDURE new_customer (firstnane VARCHAR(50), |astname VARCHAR(50), address VARCHAR(100))
MODI FI ES SQL DATA
BEG N ATOM C
I NSERT | NTO customers VALUES (DEFAULT, firstnane, |astname, CURRENT_TI MESTAWP);
I NSERT | NTO addr esses VALUES (DEFAULT, |DENTITY(), address);
END

Variables

A <vari abl e decl ar at i on> definesthe name and data type of the variable and, optionally, its default value. In
the next example, avariable isused to hold the IDENTITY value. In addition, the formal parameters of the procedure
are identified as input parameters with the use of the optional IN keyword. This procedure does exactly the same job
as the procedure in the previous example.

CREATE PROCEDURE new_customner (I N firstname VARCHAR(50), I N |astname VARCHAR(50), I N address
VARCHAR(100))
MODI FI ES SQL DATA
BEG N ATOM C
DECLARE tenp_id | NTEGER;

119

HyperS@L SQL-Invoked Routines

| NSERT | NTO CUSTOVERS VALUES (DEFAULT, firstname, |astname, CURRENT TI MESTAMP):
SET tenp_id = | DENTI TY();
| NSERT | NTO ADDRESSES VALUES (DEFAULT, tenp_id, address);

END

The BNF for variable declaration is given below:

<SQ. vari abl e decl arati on> :: = DECLARE <vari abl e name |ist> <data type> [DEFAULT
<default val ue>]

<variable name list> ::= <variable name> [{ <comma> <variable name> }...]

Examples of variable declaration are given below. Note that in aDECLARE statement with multiple comma-separated
variable names, the type and the default value appliesto all the variablesin the list:

BEG N ATOM C
DECLARE tenp_zero DATE;
DECLARE tenp_one, tenp_two | NTEGER DEFAULT 2;
DECLARE tenp_t hree VARCHAR(20) DEFAULT 'no nane';
-- nore statements ...
SET tenp_zero = DATE ' 2010-03-18';
SET tenp_two = 5;
-- nore statements ...
END

Handlers

A <handl er decl ar ati on> defines the course of action when an exception or warning is raised during the
execution of the compound statement. A compound statement may have one or more handler declarations. These
handlers become active when code execution enters the compound statement block and remain activein any sub-block
and statement within the block. The handlers become inactive when code execution leaves the block.

In the previous example, if an exception is thrown during the execution of either SQL statement, the execution of
the compound statement is terminated and the exception is propagated and thrown by the CALL statement for the
procedure. A handler declaration can resol ve the thrown excepti on within the compound statement without propagating
it, and allow the execution of the <compound statement> to continue.

In the example below, the UNDO handler declaration catches any exception that isthrown during the execution of the
compound statement inside the BEGIN / END block. Asit is an UNDO handler, all the changes to data performed
within the compound statement (BEGIN / END) block are rolled back. The procedure then returns without throwing
an exception.

CREATE PROCEDURE NEW CUSTOVER(I N firstname VARCHAR(50), I N I|astname VARCHAR(50), I N address
VARCHAR(100))

MODI FI ES SQL DATA

| abel _one: BEG N ATOM C
DECLARE tenp_id | NTEGER;
DECLARE UNDO HANDLER FOR SQLEXCEPTI ON LEAVE | abel _one;
I NSERT | NTO CUSTOVERS VALUES (DEFAULT, firstnane, |astname, CURRENT_TI MESTAMP);
SET tenp_id = I DENTITY();
I NSERT | NTO ADDRESSES VALUES (DEFAULT, tenp_id, address);

END

Other types of hander are CONTINUE and EXIT handlers. A CONTINUE handler ignores any exception and proceeds
to the next statement in the block. An EXIT handler terminates execution without undoing the data changes performed
by the previous (successful) statements.

The conditions can be general conditions, or specific conditions. Among general conditions that can be specified,
SQLEXCEPTION covers al exceptions, SQLWARNING covers all warnings, while NOT FOUND covers the not-

120

HyperS@L SQL-Invoked Routines

found condition, which israised when aDELETE, UPDATE, INSERT or MERGE statement compl etes without actu-
ally affecting any row. Alternatively, one or more specific conditions can be specified (separated with commas) which
apply to specific exceptions or warnings or classes or exceptions or warnings. A specific condition is specified with
SQLSTATE <val ue>, for example SQLSTATE 'W_01003" specifies the warning raised after a SQL statement is
executed which contains an aggregate function which encounters a null value during execution. An exampleis given
below which activates the handler when either of the two warnings is raised:

‘DECLARE UNDO HANDLER FOR SQLSTATE ' W 01003', 'WO01004' LEAVE | abel _one;

The BNF for <handl er decl arati on> isgiven below:

<handl er decl aration> ::= DECLARE {UNDO | CONTINUE | EXI T} HANDLER FOR { SQLEX-
CEPTION | SQLWARNI NG | NOT FOUND} | { SQ._STATE <state value> [, ...]} [<SQL
procedure statenent>];

A handler declaration may specify an SQL procedure statement to be performed when the handler is activated. When
an exception occurs, the example below performs the UNDO as in the previous example, then inserts the (invalid)
datainto a separate table.

DECLARE UNDO HANDLER FOR SQLEXCEPTI ON
I NSERT I NTO i nvalid_custoners VALUES(firstanne, |astnanme, address);

The<SQL pr ocedur e st at erent >isrequired by the SQL Standard but isoptional in HyperSQL . If theexecution
of the<SQL procedure stat enent > specified in the handler declaration throws an exception itself, then it is
handled by the handlersthat are currently active. The<SQL pr ocedur e st at enent > canitself be acompound
statement with its own handlers.

Assignment Statement

The SET statement is used for assignment. It can be used flexibly with rows or single values. The BNF is given below:

<assi gnnent statenent> ::= <singleton variable assignment> | <multiple variable
assi gnment >

<singl eton variable assignnent> ::= SET <assignnent target> <equal s operator>
<assi gnnent source>

<multiple variable assignment> ::= SET (<variable or paraneter> ...) = <row
val ue expressi on>

In the example below, the result of the SELECT is assigned to two OUT or INOUT arguments. The SELECT must
return one row. If it returns more than one, an exception is raised. If it returns no row, no change is made to ARG1
and ARG2.

‘SET (argl, arg2) = (SELECT col 1, col2 FROM atable WHERE id = 10); ‘

In the example below, the result of afunction call isassigned to VARL.

‘SET varl = SQRT(var?2); ‘

Select Statement : Single Row

A special form of SELECT can also be used for assigning values from a query to one or more arguments or variables.
Thisworks similar to a SET statement that has a SELECT statement as the source.

SELECT : SINGLE ROW

select statement: single row

121

HyperS@L SQL-Invoked Routines

<select statenent: single row> ::= SELECT [<set quantifier>] <select list>
| NTO <sel ect target list> <table expression>

<select target list> ::= <target specification> [{ <comm> <target specifica-
tion> }...]

Retrieve values from a specified row of atable and assign the fields to the specified targets. The example below has
anidentical effect to the example of SET statement given above.

‘SELECT coll, col2 INTO argl, arg2 FROM atabl e WHERE id = 10; \

Formal Parameters

Each parameter of a procedure can be defined as IN, OUT or INOUT. An IN parameter is an input to the procedure
and is passed by value. The value cannot be modified inside the procedure body. An OUT parameter is a reference
for output. An INOUT parameter is areference for both input and output. An OUT or INOUT parameter argument is
passed by reference, therefore only adynamic parameter argument or a variable within an enclosing procedure can be
passed for it. The assignment statement is used to assign avalueto an OUT or INOUT parameter.

In the example below, the procedure is declared with an OUT parameter.

CREATE PROCEDURE new_customer (OUT newid |INT, IN firstname VARCHAR(50), IN | astnanme VARCHAR(50),
I N address VARCHAR(100))

MODI FI ES SQL DATA

BEG N ATOM C
DECLARE tenp_id | NTEGER;
I NSERT | NTO CUSTOVERS VALUES (DEFAULT, firstnane, |astname, CURRENT_TI MESTAWP);
SET tenp_id = | DENTI TY();
I NSERT | NTO ADDRESSES VALUES (DEFAULT, tenp_id, address);
SET newid = tenp_id;

END

In the SQL session, or in the body of another stored procedure, a variable must be assigned to the OUT parameter.
After the procedure call, this variable will hold the new identity value that was generated inside the procedure.

In the example below, a session variable, t he_new i d is declared. After the call to new_cust oner, the value
for the identity is stored in t he_new i d variable. This is returned via the next CALL statement. Alternatively,
t he_new_i d can be used as an argument to another CALL statement.

DECLARE the_new_id | NT DEFAULT NULL;
CALL new_custoner(the_new_id, 'John', '"Smth', '10 Parlianent Square');
CALL the_new_id;

lterated Statements

Various iterated statements can be used in routines. In these statements, the <SQL st at enent | i st > consists of
one or more SQL statements. The<sear ch condi ti on> can be any valid SQL expression of BOOLEAN type.

<l oop statement> ::= [<beginning |abel> <colon>] LOOP <SQ@Q statenment |ist>
END LOOP [<ending | abel >]

<whi |l e statenment> ::= [<beginning | abel > <col on>] WH LE <search conditi on> DO
<SQL statenment list> END WH LE [<endi ng | abel >]

<repeat statenent> ::= [<beginning | abel > <col on>]

REPEAT <SQL statenment |ist> UNTIL <search conditi on> END REPEAT [<endi ng | abel >

122

HyperS@L SQL-Invoked Routines

In the example below, a multiple rows are inserted into a table in a WHILE loop:

| oop_Il abel : WHI LE ny_var > 0 DO
I NSERT | NTO CUSTOMERS VALUES (DEFAULT, ny_var);
SET ny_var = ny_var - 1;
IF ny_var = 10 THEN SET ny_var = 8; END I F;
IF my_var = 22 THEN LEAVE | oop_| abel ; END I F;
END WHI LE | oop_|I abel ;

Conditional Statements

There are two types of CASE ... WHEN statement and the IF ... THEN statement.
CASE WHEN
case when statement

The simple case statement usesa<case oper and> as the predicand of one or more predicates. For the right part
of each predicate, it specifies one or more SQL statements to execute if the predicate evaluates TRUE. If the ELSE
clause is not specified, at least one of the search conditions must be true, otherwise an exception is raised.

<sinple case statenent> ::= CASE <case operand> <sinple case statenent when
clause>... [<case statenment el se clause>] END CASE
<sinpl e case statenent when clause> ::= WHEN <when operand |ist> THEN <SQL

statenment |ist>
<case statenment else clause> ::= ELSE <SQ statenent |ist>

A skeletal exampleisgivenbelow. Thevariablevar_oneisfirst tested for equality with 22 or 23 and if thetest evaluates
to TRUE, then the INSERT statement is performed and the statement ends. If the test does not evaluate to TRUE,
the next condition test, which isan IN predicate, is performed with var_one and so on. The statement after the EL SE
clauseis performed if none the previous tests returns TRUE.

CASE var _one
WHEN 22, 23 THEN | NSERT INTO t_one ...;
WHEN IN (2, 4, 5) THEN DELETE FROM t _one WHERE .. .;
ELSE UPDATE t_one ...;
END CASE

The searched case statement uses one or more search conditions, and for each search condition, it specifies one or
more SQL statements to execute if the search condition evaluates TRUE. An exception israised if thereisno ELSE
clause and none of the search conditions evaluates TRUE.

<searched case statement> ::= CASE <searched case statenent when cl ause>. ..
[<case statement el se clause>] END CASE

<searched case statenent when clause> ::= WHEN <search condition> THEN <SQL
statenment |ist>

The example below is partly arewrite of the previous example, but a new condition is added:

CASE WHEN var_one = 22 OR var_one = 23 THEN I NSERT INTOt_one ...;
VWHEN var _one IN (2, 4, 5) THEN DELETE FROM t_one WHERE .. .;
WHEN var _two IS NULL THEN UPDATE t_one ...;

ELSE UPDATE t_one ...;
END CASE

123

HyperS@L SQL-Invoked Routines

IF
if statement

Theif statement is very similar to the searched case statement. The difference is that no exception israised if thereis
no EL SE clause and no search condition evaluates TRUE.

<if statenment> ::= |F <search condition> <if statenent then clause> [<if
statenment elseif clause>. ..] [<if statement else clause>] END IF

<if statenent then clause> ::= THEN <SQ. statenent |ist>

<if statenent elseif clause> ::= ELSEIF <search condition> THEN <SQL st at enent
list>
<if statenent else clause> ::= ELSE <SQ. statenent |ist>

Return Statement

The RETURN statement is required and used only in functions. The body of afunctioniseither aRETURN statement,
or acompound statement that contains a RETURN statement.

RETURN

return statement

<return statement> ::= RETURN <return val ue>
<return val ue> ::= <val ue expression> | NULL

Return a value from an SQL function. If the function is defined as RETURNS TABLE, then the valueisa TABLE
expression such as RETURN TABLE(SELECT ...) otherwise, the value expression can be any scalar expression. In
the examples below, the same function iswritten with or without aBEGIN END block. In both versions, the RETURN
value is a scalar expression.

CREATE FUNCTI ON an_hour _before_nax (e_type | NT)
RETURNS TI MESTAMP
RETURN (SELECT MAX(event_tine) FROM atabl e WHERE event type = e_type) - 1 HOUR

CREATE FUNCTI ON an_hour _before_nax (e_type | NT)
RETURNS TI MESTAMP
BEG N ATOM C
DECLAR max_event TI MESTAMWP;
SET nmax_event = SELECT MAX(event _tinme) FROM atabl e WHERE event _type = e_type;
RETURN max_event - 1 HOUR
END

Control Statements
In addition to the RETURN statement, the following statements can be used in specific contexts.
ITERATE STATEMENT

The ITERATE statement can be used to cause the next iteration of alabeled iterated statement (aWHILE, REPEAT
or LOOP statement). It issimilar to the "continue" statement in C and Java.

<iterate statenent> ::= | TERATE <st atenent | abel >

124

HyperS@L SQL-Invoked Routines

LEAVE STATEMENT

The LEAVE statement can be used to leave a labeled block. When used in an iterated statement, it is similar to the
"break" statement is C and Java. But it can be used in compound statements as well.

<l eave statement> ::= LEAVE <statement | abel >
Signal and Resignal Statements

The SIGNAL statement is used to throw an exception (or force an exception). When invoked, any exception handler
for the given exception isin turn invoked. If there is no handler, the exception is propagated to the enclosing context.

<signal statement> ::= S| GNAL SQ._STATE <state val ue>

The RESIGNAL statement is used to throw an exception from an exception handler’'s<SQ. pr ocedur e st at e-
nment >, in effect propagating the exception to the enclosing context without further action by the currently active
handlers.

<resignal statenent> ::= RESI GNAL SQ._STATE <state val ue>

Routine Polymorphism

More than one version of aroutine can be created.

For procedures, the different versions must have different parameter counts. When the procedureis called, the param-
eter count determines which version is called.

For functions, the different versions can have the same or different parameter counts. When the parameter count of two
versions of afunction isthe same, the type of parameters must be different. The best matching version of the function
is called, according to both the parameter count and parameter types.

Two versions of an overloaded function are given below. One version accepts TIMESTAMP while the other accepts
TIME arguments.

CREATE FUNCTI ON an_hour _before_or_now(t TI MESTAMP)
RETURNS TI MESTAMP
IF t > CURRENT_TI MESTAWP THEN
RETURN CURRENT_TI MESTAMP;
ELSE
RETURN t - 1 HOUR;
END | F

CREATE FUNCTI ON an_hour _before_or_now(t TI ME)
RETURNS TI ME
CASE t
WHEN > CURRENT_TI ME THEN
RETURN CURRENT_TI ME;
WHEN >= TI ME' 01: 00: 00" THEN
RETURN t - 1 HOUR;
ELSE
RETURN CURRENT_TI ME;
END CASE

more ..

Returning Data From Routines

The OUT or INOUT parameters of aprocedure are used to assign simple values to dynamic parameters or to variables
in the calling context. In addition, a SQL/PSM procedure may return result sets to the calling context. These result

125

HyperS@L SQL-Invoked Routines

sets are dynamic in the sense that a procedure may return a different number of result sets or none at al in different
invocations.

The SQL Standard uses a mechanism called CURSORS for accessing and modifying rows of aresult set one by one.
This mechanism is absolutely necessary when the database is accessed from an external application program. The
JDBC ResultSet interface allows this method of access from Java programs and is supported by HyperSQL .

The SQL Standard uses cursors within the body of a procedure to return result sets. It specifies a somewhat complex
mechanism to allow accessto these cursorsfrom the calling contexts. HyperSQL does not support accessto such result
sets within a calling SQL/PSM procedure. This is considered redundant as all operations on data can be performed
with non-cursor SQL statements.

(feature to beimplemented) HyperSQL will support returning single or multiple result setsfrom SQL/PSM procedures
only viathe JDBC CallableStatement interface. Cursors are declared and opened within the body of the procedure. No
further operation is performed on the cursors within the procedure. When the execution of the procedure is complete,
the cursors become available as Java ResultSet objects via the CallableStatement instance that called the SQL/PSM
procedure.

Currently, a single result can be returned from FUNCTION routines, when the function is defined as RETURNS
TABLE(..)

ToreturnatablefromaSELECT statement, you should useareturn statement suchasRETURN TABLE(SELECT ...);
inaSQL/PSM function. A Javafunction should return a JDBCResultSet instance. For an example of how to construct
a JDBCResultSet for this purpose, see the source code for the org.hsgldb.jdbc.JDBCArray class.

The JDBC CallableStatement class is used with the SQL statement CALL <routi ne nanme> (<argunent
1>, ...) tocdl bothfunctionsand procedures. The get XXX() methods can be used to retrieve INOUT or OUT
arguments after the call. The get Resul t Set () call can be used to access the ResultSet returned from a function
that returns aresult set.

Java Language Routines (SQL/JRT)

The body of a Java language routine is a static method of a Java class, specified with a fully qualified method name
in the routine definition.

In the example below, the static method namedt oZer oPaddedSt r i ng is specified to be called when the function
isinvoked.

CREATE FUNCTI ON zero_pad(x BI G NT, digits |INTI, maxsize |NT)
RETURNS CHAR VARYI NG(100)
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME
' CLASSPATH: org. hsqgl db.lib.StringUtil.toZeroPaddedString'

The signature of the Java method (used in the Java code but not in SQL code to create the function) is given below:

‘publ ic static String toZeroPaddedString(long value, int precision, int maxSize) ‘

The parameter and return types and of the SQL routine definition must match those of the Java method according to
the table below:

SMALLINT Short or Short

INT int or |nteger

126

HyperS@L SQL-Invoked Routines
BIGINT long or Long
NUMERIC or DECIMAL BigDecimal
FLOAT or DOUBLE Double or Double
CHAR or VARCHAR String
DATE java.sgl.Date
TIME javasgl.Time
TIMESTAMP java.sgl. Timestamp
BINARY Bytel]

BOOLEAN boolean or Boolean
ARRAY of any type java.sgl.Array
TABLE java.sgl.ResultSet

If the specified Java method is not found or its parameters and return types do not match the definition, an exception
israised. If more than one version of the Java method exist, then the one with matching parameter and return typesis
found and registered. If two “equivalent” methods exist, the first oneis registered. (This situation arises only when a
parameter is a primitivein one version and an Object in another version, e.g. | ong andj ava. | ang. Long.).

When the Javamethod of an SQL/JRT routine returns avalue, it should be within the size and precision limits defined
in the return type of the SQL-invoked routine, otherwise an exception is raised. The scale difference are ignored and
corrected. For example, in the above example, the RETURNS CHAR VARYI N 100) clauselimitsthe length of the
strings returned from the Java method to 100. But if the number of digits after the decimal point (scale) of areturned
BigDecimal valueislarger than the scale specified in the RETURNS clause, the decimal fraction is silently truncated
and no exception of warning is raised.

Polymorphism

If two versions of the same SQL invoked routine with different parameter types are required, they can be defined to
point to the same method name or different method names, or even methods in different classes. In the example below,
the first two definitions refer to the same method name in the same class. In the Java class, the two static methods are
defined with corresponding method signatures.

In the third example, the Java function returns aresult set and the SQL declaration includes RETURNS TABLE.

CREATE FUNCTI ON an_hour _before_or_now(t TI ME)
RETURNS TI ME
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME ' CLASSPATH: or g. npo. | i b. nowLessAnHour"'

CREATE FUNCTI ON an_hour _before_or_now(t TI MESTAMP)
RETURNS TI MESTAMP
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME ' CLASSPATH: or g. npo. | i b. nowLessAnHour"'

CREATE FUNCTI ON t est quer y(| NTEGER)
RETURNS TABLE(n VARCHAR(20), i |NT)
READS SQL DATA
LANGUAGE JAVA
EXTERNAL NAME ' CLASSPATH: or g. hsql db. t est . Test JavaFuncti ons. get QueryResul t'

In the Java class:

127

HyperS@L SQL-Invoked Routines

public static java.sql.Time nowLessAnHour (j ava. sql . Ti me val ue) {

}

public static java.sql.Timestanp nowLessAnHour (j ava. sql . Ti mest anp val ue)

}

public static ResultSet getQueryResult(Connection connection, int i) throws SQ.Exception {
Statenent st = connection.createStatenent();
return st.executeQuery("SELECT * FROM T WHERE | < " + i);

Java Language Procedures

Java procedures are defined similarly to functions. The differences are:
» Thereturn type of the Java static method must be void.

 If aparameter is defined as OUT or INOUT, the corresponding Java static method parameter must be defined as
an array of the JIDBC non-primitive type.

» When the Java static method isinvoked, the OUT and INOUT arguments are passed as a single-element array.

 The static method can modify the OUT or INOUT param by assigning a value to the sole element of the argument
array.

« If the procedure contains SQL statements, only statements for data access and manipulation are allowed. The java
method should not perform commit or rollback. The SQL statements should not change the session settings and
should not include statements at create or modify tables definitions or other database objects. These rules are gen-
erally enforced by the engine, but additional enforcement may be added in future versions

An example of aprocedure definition is given below:

CREATE PROCEDURE new_customer (firstnane VARCHAR(50), |astname VARCHAR(50), address VARCHAR(100))
MODI FI ES SQL DATA
LANGUAGE JAVA
EXTERNAL NAME ' CLASSPATH: or g. hsql db. t est . Test 01. newCust oner Pr ocedur e’

Legacy Support

The legacy HyperSQL statement, CREATE ALI AS <name> FOR <fully qualified Java nethod
name> isno longer supported directly. It is supported when importing databases and translates to a special CREATE
FUNCTI ON <nane> statement that creates the function in the PUBLIC schema.

The direct use of a Java method as a function is still supported but deprecated. It is internally translated to a special
CREATE FUNCTI ON statement where the name of the function is the double quoted, fully qualified name of the
Java method used.

SQL Language Aggregate Functions

HyperSQL adds an extension to the SQL Standard to allow user defined aggregate functions. A user defined aggregate
function has a single parameter when it is used in SQL statements. Unlike the predefined aggregate functions, the
keyword DISTINCT cannot be used when auser defined aggregate functionisinvoked. Like all user defined functions,
an aggregate function belongs to a schema and can be polymorphic.

A user defined aggregate function can be used in SQL statements where a predefined aggregate function is allowed.

128

HyperS@L SQL-Invoked Routines

Definition of Aggregate Functions

An aggregate function is aways defined with 4 parameters. The first parameter is the parameter that is used when the
functionisinvoked in SQL statements, the rest of the parameter areinvisible to theinvoking statement. The type of the
first parameter is user defined. The type of the second parameter must be BOOLEAN. Thethird and fourth parameters
have user defined types and must be defined as INOUT parameters. The defined return type of the function determines
the type of the value returned when the function is invoked.

CREATE AGGREGATE FUNCTION
user defined aggregate function definition

Aggregate function definition is similar to normal function definition and has the mandatory <r et ur ns cl ause>.
The BNF is given below.

<user defined aggregate function> ::= CREATE AGGREGATE FUNCTI ON <schema quali -
fied routi ne name> <SQL aggregate paraneter declaration |list> <returns cl ause>
<routine characteristics> <routine body>

The parameter declaration list BNF is given below. The type of the first parameter is used when the function is in-
voked as part of an SQL statement. When multiple versions of afunction are required, each version will have the first
parameter of a different type.

<SQ. aggregate declaration list> ::=<left paren>[IN [<SQ paraneter nane>]
<paraneter type> <conmma> [IN] [<SQ. paraneter name>] BOOLEAN <conma> | NOUT
[<SQL paraneter nane>] <paraneter type> <comma> | NOUT [<SQ. par aneter nane>]
<paraneter type> <right paren>

Thereturntypeisuser defined. Thisisthetype of the resulting value when the functionis called. Usually an aggregate
function is defined with CONTAINS SQL, as it normally does not read the data in database tables, but it is possible
to define the function with READS SQL DATA and access the database tables.

HyperSQL invokes the aggregate function, with al the arguments set, once per each row in order to compute the
values. Finadly, it invokes the function once more to return the final result.

In the computation phase, the first argument is the value of the user argument as specified in the SQL statement,
computed for the current row. The second argument is the boolean FALSE. The third and fourth argument values
are initially null, but they can be updated in the body of the function during each invocation. The third and fourth
arguments act asregistersand hold their values between invocations. The return value of the functionisignored during
the computation phase (when the second parameter is FALSE).

After the computation phase, the function is invoked once more to get the final result. In this invocation, the first
argument is NULL and the second argument is boolean TRUE. The third and fourth arguments hold the values they
held at the end of the last invocation. The value returned by the function in thisinvocation is used as the result of the
aggregate function computation in the invoking SQL statement. In SQL queries with GROUP BY,, the call sequence
is repeated for each separate group.

SQL PSM Aggregate Functions

The example below features a user defined version of the Standard AVE <val ue expr essi on>) aggregate func-
tion for INTEGER input and output types. This function behaves differently from the Standard AV G function as it
returns O when all the input values are null.

CREATE AGGREGATE FUNCTI ON udavg(I N x | NTEGER |N flag BOOLEAN, | NOUT addup BI G NT, | NOUT counter
| NT)
RETURNS | NTEGER

129

HyperS@L SQL-Invoked Routines

CONTAI NS SQL
BEG N ATOM C
IF flag THEN
RETURN addup / counter;
ELSE
SET counter = COALESCE(counter, 0) + 1;
SET addup = COALESCE(addup, 0) || CQOALESCE(x, 0);
RETURN NULL;
END | F;
END

The user defined aggregate function is used in a select statement in the example below. Only the first parameter is
visible and utilised in the select statement.

‘SELECI’ udavg(i d) FROM custoners GROUP BY | ast nane; ‘

In the example below, the function returns an array that contains all the values passed for the aggregated column. For
use with longer arrays, you can optimise the function by defining a larger array in the first iteration, and using the
TRIM_ARRAY function on the RETURN to cut the array to size:

CREATE AGGREGATE FUNCTI ON array_aggregate(I N val VARCHAR(100), IN flag bool ean, | NOUT buffer
VARCHAR(100) ARRAY, | NQUT counter | NT)
RETURNS VARCHAR(100) ARRAY
CONTAI NS SQL
BEG N ATOM C
IF flag THEN
RETURN buf fer;
ELSE
IF val 1S NULL THEN RETURN NULL; END IF;
I'F counter IS NULL THEN SET counter = 0; END I F;
SET counter = counter + 1,
IF counter = 1 THEN SET buffer = ARRAY[val];
ELSE SET buffer[counter] = val; END IF;
RETURN NULL;
END | F;
END

The tables and data for the select statement below are created with the DatabaseM anager or DatabaseM anagerSwing
GUI apps. Part of the output is shown. Each row of the output includes an array containing the values for the invoices
for each customer.

SELECT | D, FI RSTNAME, LASTNAME, ARRAY_AGGREGATE(CAST(| NvVO CE. TOTAL AS VARCHAR(100)))
FROM custoner JO N I NVO CE ON | D =CUSTOVERI D
GROUP BY I D, FI RSTNAME, LASTNAME

11 Susanne Kar sen ARRAY[' 3988. 20']

12 John Pet erson ARRAY[' 2903.10','4382.10',"'4139.70',"'3316.50']
13 M chael Cl ancy ARRAY[' 6525. 30']

14 Janes Ki ng ARRAY[' 3665. 40' , ' 905. 10' , ' 498. 00']

18 Sylvia d ancy ARRAY[' 634. 20", ' 4883. 10']

20 Bob d ancy ARRAY[' 3414.60' ,' 744.60']

Java Aggregate Functions

A Java aggregate function is defined similarly to PSM functions, apart from the routine body, which is defined as
EXTERNAL NAME ... TheJavafunction signature must follow the rulesfor both nullable and INOUT parameters,
therefore:

No agrument isdefined asaprimitive or primitive array type. Thisallows nullsto be passed to the function. The second
and third arguments must be defined as arrays of the JDBC non-primitive types listed in the table in the previous
section.

130

HyperS@L SQL-Invoked Routines

In the example below, a user-defined aggregate function for geometric mean is defined.

CREATE AGCGREGATE FUNCTI ON geonetric_nean(|I N val DOUBLE, IN flag BOOLEAN, | NOUT register DOUBLE,
I NOUT count er | NT)
RETURNS DOUBLE
NO SQL
LANGUAGE JAVA
EXTERNAL NAME ' CLASSPATH: or g. hsql db. t est. Test 01. geonetri cMean'

The Java function definition is given below:

public static Doubl e geonetricMean(Double in, Bool ean fl ag,
Doubl e[] register, Integer[] counter) {

if (flag) {
if (register[0] == null) { return null; }
doubl e a = register[0].doubl eVal ue();
double b = 1 / (double) counter[O0];
return Doubl e. val ueXf (j ava. | ang. Mat h. powm(a, b));
}
if (in==mnull) { return null; }
if (in.doubleValue() == 0) { return null; }
if (register[0] == null) {
regi ster[0] in;
count er[0] I nteger. val ued (1);

} else {
regi ster[0] = Doubl e. val ueXf (regi ster[0]. doubl eval ue() * in.doubleValue());
counter[0] = Integer.valueO (counter[O].intValue() + 1);

}

return null;

}

In a select statement, the function is used like built in aggregate functions:

‘SELECT geonetri c_nean(age) FROM FROM custoner

Routine Definition

As discussed in the previous pages, routine definition has several mandatory or optional clauses. The complete BNF
supported by HyperSQL and the remaining clauses are documented in this section.

CREATE FUNCTION
CREATE PROCEDURE
routine definition

Routine definition is similar for procedures and functions. A function definition has the mandatory <r et ur ns
cl ause> whichisdiscussed later. The description given so far coversthe essential elements of the specification with
the BNF given below.

<schenma procedure> ::= CREATE PROCEDURE <schenma qualified routine name> <SQ
paraneter declaration |list> <routine characteristics> <routine body>

<scherma function> ::= CREATE FUNCTION <schema qualified routine nane> <SQ
par amet er declaration list> <returns clause> <routine characteristics> <routine
body>

Parameter declaration list has been described above. For SQL/JRT routines, the <SQL par aneter nane> is
optional while for SQL/PSM routines, it isrequired. If the<par anet er nbde> of aparameter isOUT or INOUT,
it must be specified. The BNF is given below:

131

HyperS@L SQL-Invoked Routines

<SQ. paraneter declaration list> ::= <left paren> [<SQ paraneter declaration>
[{ <comma> <SQL paranmeter declaration>}...]] <right paren>
<SQ. paraneter declaration> ::= [<paraneter node>] [<SQ paranmeter nane>]

<par ameter type>

<parameter nmode> ::= IN| OUT | | NOUT

<paraneter type> ::= <data type>

Return Value and Table Functions
RETURNS
returns clause

The <returns cl ause> specifies the type of the return value of a function. For al SQL/PSM functions and
ordinary SQL/JRT functions, this is simply a type definition which can be a built-in type, a DOMAIN type or a
DISTINCT type, or alternatively, a TABLE definition. For example, RETURNS INTEGER.

For a SQL/JRT function, it is possible to definea<returns tabl e type> for aJava method that returns a
j ava. sgl . Resul t Set object. Such SQL/JRT functions are called table functions. Table functions are used dif-
ferently from normal functions. A table function can be used in an SQL query expression exactly where anormal table
or view isalowed. At the time of invocation, the Java method is called and the returned ResultSet is transformed into
an SQL table. The column types of the declared TABLE must match those of the ResultSet, otherwise an exception
israised at the time of invocation.

If a<returns table type>isdefined for an SQL/PSM function, the following expression is used inside the
function to return atable: RETURN TABLE (<query expression>); Intheexample blow, atable with
two columnsis returned.

[RETURN TABLE (SELECT a, b FROM atable WHERE e = 10); |

If aJDBC Cal | abl eSt at enent isused to CALL thefunction, the table returned from the function call isreturned
and can be accessed with the get Resul t Set () method of the Cal | abl eSt at enent .

<returns clause> ::= RETURNS <returns type>

<returns type> ::= <returns data type> | <returns table type>

<returns table type> ::= TABLE <table function colum I[ist>

<table function colum list> ::= <left paren> <table function colum i st
element> [{ <conma> <table function colum list elenment>1} ...] <right paren>
<table function columm list element> ::= <columm nane> <data type>

<returns data type> ::= <data type>

routine body
routine body

Routine body is either one or more SQL statements or a Java reference, as described. The user that defines the routine
by issuing the CREATE FUNCTION or CREATE SCHEMA command must have the relevant access rights to all
tables, sequences, routines, etc. that are accessed by the routine. If another user is given EXECUTE privilege on the
routine, then there are two possihilities, depending onthe<r i ght s ¢l ause>. Thisclauserefersto the accessrights

132

HyperS@L SQL-Invoked Routines

that are checked when aroutineisinvoked. ThedefaultisSQL SECURI TY DEFI NER, which means accessrights of
the definer are used; therefore no extra checks are performed when the other user invokes the routine. The alternative
SQL SECURI TY | NVOKER means access rights on all the database objects referenced by the routine are checked
for the invoker. This alternative is not supported by HyperSQL.

<routine body> ::= <SQ routine spec> | <external body reference>
<SQ@. routine spec> ::=[<rights clause>] <SQ routine body>
<rights clause> ::= SQ SECURITY | NVOKER | SQ. SECURI TY DEFI NER

SQL routine body

QL routine body

The routine body of aan SQL routine consists of an statement.

<SQ@. routine body> ::= <SQ. procedure statenent>
EXTERNAL NAME

external body reference

External name specifiesthe qualified name of the Javamethod associated with thisroutine. Early rel eases of HyperSQL
2.0 only supports Java methods within the classpath. The<ext er nal Java reference string>isaquoted
string which starts with CLASSPATH: and is followed by the Java package, class and method names separated with
dots. HyperSQL does not currently support the optional <Java par anet er decl aration |ist>.

<external body reference> ::= EXTERNAL NAME <external Java reference string>

<external Java reference string> ::= <jar and cl ass nanme> <peri od> <Java net hod
nane> [<Java paraneter declaration |ist>]

Routine Characteristics

The<routi ne characteri sti cs> clause covers several sub-clauses

<routine characteristics> ::= [<routine characteristic>. ..]

<routine characteristic> ::= <language clause> | <paraneter style clause> |
SPECI FI C <specific name> | <determnistic characteristic> | <SQ.-data access
indication> | <null-call clause> | <returned result sets characteristic> |

<savepoi nt |evel indication>
LANGUAGE
language clause

The<l anguage cl ause> refersto the language in which the routine body iswritten. It is either SQL or Java. The
default is SQL, so JAVA must be specified for SQL/JRT routines.

<l anguage cl ause> ::= LANGUAGE <l anguage nane>
<l anguage name> ::= SQ. | JAVA

The parameter styleisnot alowed for SQL routines. It is optional for Java routines and, in HyperSQL, the only value
allowed isJAVA.

133

HyperS@L SQL-Invoked Routines

<paraneter style> ::= JAVA
SPECIFIC NAME
specific name

The SPECI FI C <speci fi c nanme> clauseisoptiona but the engine will creates an automatic name if it is not
present. When there are several versions of the sameroutine, the<speci f i ¢ hame>isused in schemamanipulation
statements to drop or ater a specific version. The <speci fi ¢ nane> is a user-defined name. It applies to both
functions and procedures. In the examples below, a specific name is specified for each function.

CREATE FUNCTI ON an_hour _before_or_now(t TI MESTAMP)
RETURNS TI MESTAMP
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
SPECI FI C an_hour _before_or_now wi th_ti mestanp
EXTERNAL NAME ' CLASSPATH: or g. npo. | i b. nowLessAnHour"'

CREATE FUNCTI ON an_hour _before_nmax (e_type | NT)
RETURNS TI MESTAMP SPECI FI C an_hour _before_max_wi th_i nt
RETURN (SELECT MAX(event _tine) FROM atabl e WHERE event _type = e_type) - 1 HOUR

DETERMINISTIC
deterministic characteristic

The<det erni ni stic characteristic> clauseindicatesthat aroutine isdeterministic or not. Deterministic
means the routine does not reference random values, external variables, or time of invocation. The default is NOT
DETERM NI STI C. It is essential to declare this characteristics correctly for an SQL/JRT routine, as the engine does
not know the contents of the Java code, which could include callsto methods returning random or time sensitive values.

<determ nistic characteristic> ::= DETERM N STIC | NOT DETERM NI STI C
SQL DATA access
L DATA access characteristic

The<SQL- dat a access i ndi cat i on> clauseindicatesthe extent to which aroutineinteracts with the database
or the data stored in the database tables (SQL data). NO SQL means no SQL command is issued in the routine body
and can be used only for SQL/JRT functions. CONTAI NS SQL means some SQL commands are used, but they do
not read or modify the SQL data. READS SQL DATA and MODI FI ES SQL DATA are self explanatory.

<SQ.-data access indication> ::= NO SQL | CONTAINS SQ. | READS SQ. DATA |
MODI FI ES SQ. DATA

NULL INPUT
null call clause
Null Arguments

The<nul | -cal | cl ause> isused only for functions. If afunction returns NULL when any of the calling argu-
mentsisnull, then by specifying RETURNS NULL ON NULL | NPUT, callsto the function are known to be redundant
and do not take place when an argument isnull. Thissimplifiesthe coding of the SQL/JRT Javamethods and improves
performance at the same time.

<null-call clause> ::= RETURNS NULL ON NULL I NPUT | CALLED ON NULL | NPUT

134

HyperS@L SQL-Invoked Routines

SAVEPOINT LEVEL
transaction impact

The <savepoi nt | evel indication>isusedonly for procedures and refers to the visibility of existing
savepoints within the body of the procedure. If NEW SAVEPQO NT LEVEL is specified, savepoints that have been
declared prior to calling the procedure becomeinvisible within the body of the procedure. HyperSQL ' simplementation
accepts only NEW SAVEPQO NT LEVEL, which must be specified.

<savepoi nt level indication> ::= NEWSAVEPO NT LEVEL | OLD SAVEPO NT LEVEL
DYNAMIC RESULT SETS
returned result sets characteristic

The<returned result sets characteristic>isusedonly for SQL/PSM procedures. The maximum
number of result sets that a procedure may return can be specified with the clause below. The default is zero. Details
are discussed in the previous sections.

<returned result sets characteristic> ::= DYNAM C RESULT SETS <nmmxi num r et ur ned
result sets>

135

HyperS@L

Chapter 9. Triggers

Fred Toussi, The HSQL Development Group

$Revision: 3042 $

Copyright 2010 Fred Toussi. Permission is granted to distribute this document without any alteration under
the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group to
distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2009-07-14 17:55:19 +0100 (Tue, 14 Jul 2009) $

Overview

Trigger functionality first appeared in SQL:1999. Triggers embody the live database concept, where changes in SQL
datacan be monitored and acted upon. ThismeanseachtimeaDELETE, UPDATE or INSERT isperformed, additional
actions are taken by the declared triggers. SQL Standard triggers are imperative while the relational aspects of SQL
are declarative. Triggers allow performing an arbitrary transformation of datathat is being updated or inserted, or to
prevent insert, updated or deletes, or to perform additional operations.

Some bad examples of SQL triggers in effect enforce an “integrity constraint” which would better be expressed as a
CHECK constraint. A trigger that causes an exception if the value inserted in acolumn is negative is such an example.
A check constraint that declares CHECK VALUE >= 0 (declarative) is a better way of expressing an integrity
constraint than atrigger that throws an exception if the same condition isfalse.

Usage constraints cannot always be expressed by SQL’s integrity constraint statements. Triggers can enforce these
congtraints. For example, it is may be possible to write a check constraint that prevents data from being added, or
modified on weekends. But it is not possible to use a check constraint to prevent deletes. A trigger can be used to
enforce the time when each operation is allowed.

A trigger can modify the values that are inserted into the database, instead of rejecting them. For example, a badly
formatted string can be cleaned up by atrigger before INSERT.

Triggers can aso perform additional data changes, for example inserting an additional row into a different table for
data audits.

A trigger isdeclared to activate when an UPDATE, INSERT or DELETE actionis performed on atable. These actions
may be direct or indirect. Indirect actions may arise from CASCADE actions of FOREIGN KEY constraints, or from
data change statements performed on a VIEW that is based on the table that in.

It is possible to declare multiple triggers on a single table. The triggers activate one by one according to the order in
which they were defined.

A row level trigger allows access to the deleted or inserted rows. For UPDATE actions there is both an old and new
version of each row. A trigger can be specified to activate before or after the action has been performed. Triggers
that are performed after the action cannot modify the rows that have been modified. These triggers can perform other
actions, such asinserting rows into other tables. Triggersthat are performed before the action can modify the inserted
or updated rows but not the deleted rows.

A TRIGGER that is declared on a VIEW, isan INSTEAD OF trigger. This term means when an INSERT, UPDATE
or DELETE statement is executed, the trigger action is al that is performed, and no further data change takes place
on the VIEW. The trigger action can include all the statements that are necessary to change the data in the tables
that underlie the VIEW. With the use of INSTEAD OF triggers a read-only view can effectively become updatable
or insertable-into.

136

HyperS@L Triggers

Trigger Properties

A trigger is declared on a specific table or view. Various trigger properties determine when the trigger is executed
and how.

Trigger Event

The trigger event specifies the type of SQL statement that causes the trigger to execute. Each trigger is specified to
execute when an INSERT, DELETE or UPDATE takes place.

The event can be filtered by two separate means. For all triggers, the WHEN clause can specify a condition against
the rows that are the subject of the trigger, together with the data in the database. For example, atrigger can activate
when the size of a table becomes larger than a certain amount. Or it can activate when the values in the rows being
modified satisfy certain conditions.

An UPDATE trigger can be declared to execute only when certain columns are the subject of an update statement. For
example, atrigger declared as AFTER UPDATE OF (datecolumn) will activate only when the UPDATE statement
that is executed includes the column, datecolumn, as one of the columns specified inits SET statements.

Granularity

A statement level trigger is performed once for the executed SQL statement and is declared as FOR EACH STATE-
MENT.

A row level trigger is performed once for each row that is modified during the execution of an SQL statement and is
declared as FOR EACH ROW. Note that an SQL statement can INSERT, UPDATE or DELETE zero or more rows.

If a statement does not apply to any row, then the trigger is not executed.
If FOR EACH ROW or FOR EACH STATEMENT is not specified, then the default is FOR EACH STATEMENT.

The granularity dictates whether the REFERENCING clause can specify OLD ROW, NEW ROW, or OLD TABLE,
NEW TABLE.

A trigger declared as FOR EACH STATEMENT can only be an AFTER trigger.

Trigger Action Time

A trigger is executed BEFORE, AFTER or INSTEAD OF the trigger event.

INSTEAD OF triggers are allowed only when the trigger is declared on a VIEW. With this type of trigger, the event
(SQL statement) itself is not executed, only the trigger.

BEFORE or AFTER triggers are executed just before or just after the execution of the event. For example, just before
arow isinserted into a table, the BEFORE trigger is activated, and just after the row is inserted, the AFTER trigger
is executed.

BEFORE triggers can modify the row that is being inserted or updated. AFTER triggers cannot modify rows. They
are usually used to perform additional operations, such as inserting rows into other tables.

A trigger declared as FOR EACH STATEMENT can only be an AFTER trigger.

References to Rows

If the old rows or new rows are referenced in the SQL statements in the trigger action, they must have names. The
REFERENCING clause is used to give names to the old and new rows. The clause, REFERENCING OLD | NEW

137

HyperS@L Triggers

TABLE is used for statement level triggers. The clause, REFERENCING OLD | NEW ROW is used for row level
triggers. If the old rows or new rows are referenced in the SQL statementsin the trigger action, they must have names.
In the SQL statements, the columns of the old or new rows are qualified with the specified names.

Trigger Condition

The WHEN clause can specify acondition for the columns of the row that is being changed. Using this clause you can
simply avoid unnecessary trigger activation for rows that do not need it.

For UPDATE trigger, you can specify alist of columns of thetable. If alist of columnsisspecified, thenif the UPDATE
statement does not change the columns with SET clauses, then the trigger is not activated at all.

Trigger Action in SQL

The trigger action specifies what the trigger does when it is activated. This is usualy written as one or more SQL
Statements.

When arow level trigger isactivated, thereisan OLD ROW, or aNEW ROW, or both. An INSERT statement supplies
aNEW ROW row to beinserted into atable. A DELETE statement supplied an OLD ROW be deleted. An UPDATE
statement supplies both OLD ROW and NEW ROW that represent the updated rows before and after the update. The
REFERENCING clause gives names to these rows, so that the rows can be referenced in the trigger action.

In the example below, a name is given to the NEW ROW and it is used both in the WHEN clause and in the trigger
action SQL toinsert arow into atriglog table after each row insert into the testtrig table.

create trigger trig after insert on testtrig
referenci ng new row as new ow
for each row when (newow.id > 1)
insert into triglog values (newow id, newow data, 'inserted')

In the example blow, the trigger code modifies the updated data if a condition is true. This type of trigger is useful
when the application does not perform the necessary checks and modifications to data.

create trigger t before update on custoner
ref erenci ng new as newow for each row
begin atomc
if length(newrow. firstnane) > 10 then
set newow. firstname = | ower (new ow. firstnane);
end if;
end

Trigger Action in Java

A trigger action can be written as a Java class that implements the org.hsgldb.Trigger interface. This interface has a
single method which is called when the trigger is activated, either before or after the event. When the method is called
by theengine, it suppliesthe name of thetrigger (as name argument), the name of the tabl e (astable argument), the OLD
ROW (as row1 argument) and the NEW ROW (as row2 argument). The row1 argument is null for row level INSERT
triggers. The row2 argument is null for row level DELETE triggers. For table level triggers, both arguments are null
(that is, there is no access to the data). The triggerType argument is one of the constants in the org.hsgldb.Trigger
interface which indicate the type of trigger, for example, INSERT_BEFORE_ROW or UPDATE_AFTER_ROW.

The Java class for the trigger can be reused for several triggers on different tables. The method code can distinguish
between the different tables and triggers using the supplied arguments and take appropriate action.

fire (int triggerType, String nane, String table, Object rowl[], Cbject row2[])

138

HyperS@L Triggers

The Java method for a synchronous trigger (see below) can modify the values in row2 in a BEFORE trigger. Such
modifications are reflected in the row that is being inserted or updated. Any other modifications are ignored by the
engine.

A Javatrigger that uses an instance of or g. hsql db. Tri gger hastwo forms, synchronous, or asynchronous (im-
mediate or queued). By default, or when QUEUE 0 is specified, the action is performed immediately by calling the
Javamethod. Thisissimilar to SQL trigger actions. When QUEUE nis specified with n larger than O, the engine uses
a separate thread to execute the Java method, using a queue with the size n. For certain applications, such asreal-time
systemsthis allows asynchronous notificationsto be sent by the trigger event, without introducing delaysin the engine.
With asynchronoustriggers, an extraparameter, NOWAIT can be used in trigger definition. This overcomesthe queue
full condition. In this mode, old calls that are till in the queue are discarded one by one and replaced with new calls.

Javatriggers can modify the row data. They should not be used to modify the database, e.g. insert new rows, etc.

For sample trigger classes and test code see, org.hsgldb.sample.TriggerSample, org.hsgldb.test. TestTriggers,
org.hsgldb.test. TriggerClass and the associated text script TestTriggers.txt in /testrun/hsgldb/ directory. In the exam-
ple below, the trigger is activated only if the update statement includes SET clauses that modify any of the specified
columns (c1, c2, c3). Furthermore, the trigger is not activated if the c2 column in the updated row is null.

create trigger trigbur before update of cl, c2, c3 on testtrig
referenci ng new row as new ow
for each row when (newrow.c2 is not null)
call "org.hsqgl db.test. Tri ggerd ass"

Java functions can be called from an SQL trigger. So it is possible to define the Java function to perform any external
communication that are necessary for the trigger, and use SQL code for checks and alterations to data.

create trigger t before update on custoner
referenci ng new as newow for each row
begin atomc
if length(newow firstname) > 10 then
call ny_java_function(new ow. firstname, new ow. | astnane);
end if;
end

Trigger Creation

CREATE TRIGGER
trigger definition

<trigger definition> ::= CREATE TRI GGER <trigger nanme> <trigger action tine>
<trigger event> ON <table name> [BEFORE <other trigger name>] [REFERENCI NG
<transition table or variable list>] <triggered action>

<trigger action time> ::= BEFORE | AFTER | | NSTEAD OF

<trigger event> ::= |INSERT | DELETE | UPDATE [OF <trigger colum list>]
<trigger colum list> ::= <colum name |ist>

<triggered action> ::= [FOR EACH { ROW | STATEMENT }] [<triggered when
clause>] <triggered SQ statenent>

<triggered when clause> ::= WHEN <l eft paren> <search condition> <right paren>
<triggered SQL statenment> ::= <SQL procedure statement> | BEA N ATOM C { <SQL
procedure statenment> <semicolon> }... END | [QUEUE <integer literal>] [NOMIT]

CALL <HSQLDB trigger class FQ\W>

139

HyperS@L Triggers

<transition table or variable list> ::= <transition table or variable>...

<transition table or variable> ::= OLD[ROWN] [AS] <old transition variable
name> | NEW|[ROWN] [AS] <new transition variable nane> | OLD TABLE [AS]
<old transition table name> | NEWTABLE [AS] <new transition table nane>

<transition tabl e nane>

<old transition table name> ::

<new transition table nanme> ::= <transition table nane>
<transition table nane> ::= <identifier>

<old transition variable name> ::= <correl ati on nane>
<new transition variable name> ::= <correl ation nane>

Trigger definitionisarelatively complex statement. The combination of <t ri gger action tine>and<tri g-
ger event >determinesthetype of thetrigger. Examplesinclude BEFORE DELETE, AFTER UPDATE, INSTEAD
OF INSERT. If theoptional [OF <trigger colum |ist>] isspecified for an UPDATE trigger, then the
trigger isactivated only if one of the columnsthat isinthe<t ri gger col um 1 i st >isspecifiedinthe UPDATE
statement that activates the trigger.

If atrigger is FOR EACH ROW which is the default option, then the trigger is activated for each row of the table
that is affected by the execution of an SQL statement. Otherwise, it is activated once only per statement execution. In
the first case, there is a before and after state for each row. For UPDATE triggers, both before and after states exist,
representing the row before the update, and after the update. For DELETE, triggers, there is only a before state. For
INSERT triggers, thereisonly an after state. If atrigger isFOR EACH STATEMENT, then atransient tableis created
containing al the rows for the before state and another transient table is created for the after state.

The[REFERENCI NG <transition tabl e or vari abl e>] isusedto giveanameto thebefore and after
datarow or table. This name can be referenced inthe <SQL pr ocedur e st at enent > to access the data.

Theoptional <t ri gger ed when cl ause> isasearch condition, similar to the search condition of aDELETE or
UPDATE statement. If the search condition is not TRUE for arow, then the trigger is not activated for that row.

The<SQL procedure statenent > islimitedto INSERT, DELETE, UPDATE and MERGE statements.

The <HSQLDB trigger class FQ\>isaddimited identifer that contains the fully qualified name of a Java
classthat implementstheor g. hsql db. Tri gger interface.

Early releases of HyperSQL version 2.0 do not alow the use of OLD TABLE or NEW TABLE in statement level
triggers.

TRIGGERED SQL STATEMENT
triggered SQL statement
The <triggered SQ statenent > hasthreeforms.

The first form is a single SQL procedure statement. This statement can reference the OLD ROW and NEW ROW
variables. For example, it can reference these variables and insert arow into a separate table.

The second form is enclosed in a BEGIN ... END block and can include one or more SQL procedure statements. In
BEFORE triggers, you can include SET statements to modify the inserted or updated rows. In AFTER triggers, you
can include INSERT, DELETE and UPDATE statements to change the data in other database tables. SELECT and
CALL statements are allowed in BEFORE and AFTER triggers. CALL statements in BEFORE triggers should not
modify data.

140

HyperS@L Triggers

The third form specifies acall to a Java method.

An example of atrigger with a block is given below. The block can include elements discussed the SQL-Invoked
Routines chapter, including local variables, loops and conditionals. Y ou can also raise an exception in such blocksin
order to terminate the execution of the SQL statement that caused the trigger to execute.

create trigger trig after insert on testtrig
referenci ng new row as new ow
for each row when (newow.id > 1)
begin atomc

insert into triglog values (newow id, newow data, 'inserted');
/* nore statements can be included */
end

TRIGGER EXECUTION ORDER
trigger execution order
<trigger execution order> ::= BEFORE <other trigger nane>

HyperSQL extends the SQL Standard to allow the order of execution of atrigger to be specified by using [BEFORE
<other trigger name>] in the definition. The newly defined trigger will be executed before the specified other trigger. If
thisclauseisnot used, the new trigger is executed after all the previously defined triggers of the same scope (BEFORE,
AFTER, EACH ROW, EACH STATEMENT).

DROP TRIGGER
drop trigger statement
<drop trigger statement> ::= DROP TRI GGER <trigger nane>

Destroy atrigger.

141

HyperS@L

Chapter 10. Built In Functions

Fred Toussi, The HSQL Development Group
$Revision: 3601 $

Copyright 2010 Fred Toussi. Permission is granted to distribute this document without any alteration under
the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group to
distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2010-05-31 20:17:47 -0400 (Mon, 31 May 2010) $

Overview

HyperSQL supports a wide range of built-in functions and allows user-defined functions written in SQL and Java
languages. User defined functions are covered in a separate chapter. If a built-in function is not available, you can
write your own using SQL. Aggregate functions are discussed in chapters that cover SQL in general.

The built-in functions fall into three groups:
» SQL Standard Functions

A wide rang of functions defined by SQL/Foundation are supported. SQL/Foundation functions that have no pa-
rameter are called without empty parentheses. Functions with multiple parameters often use keywords instead of
commas to separate the parameters. Many functions are overloaded. Among these, some have one or more optional
parameters that can be omitted, while the return type of some functions is dependent upon the type of one of the
parameters. The usage of SQL Standard Functions (where they can be used) is covered more extensively in the
Data Access and Change chapter

» JDBC Open Group CLI Functions

These functions were defined as an extension to the CLI standard, which is the basis for ODBC and JDBC and
supported by many database products. JDBC supports an escape mechanism to specify function callsin SQL state-
ments in amanner that is independent of the function names supported by the target database engine. For example
SELECT {fn DAYOFMONTH (dat eCol unm)} FROM nyTabl e can beused in JDBC and is trandlated to
Standard SQL as SELECT EXTRACT (DAY_COF MONTH FROM dat eCol urm) FROM nyTabl e if adatabase
engine supports the Standard syntax. If a database engine does not support Standard SQL, then the trand ation will
be different. HyperSQL supports all the function names specified in the JIDBC specifications as native functions.
Therefore, thereisnoneedtousethe{fn FUNC NAVE (...) } escapewith HyperSQL. If aJDBC function
is supported by the SQL Standard in adifferent form, the SQL Standard form is the preferred form to use.

» HyperSQL Built-In Functions

Several additional built-in functions are available for some useful operations. Some of these functions return the
current setting for the session and the database. The General Functions accept arguments of different types and
return values based on comparison between the arguments.

In the BNF specification used here, words in capital letters are actual tokens. Syntactic elements such as expressions
are enclosed in angle brackets. The<l eft paren>and<ri ght paren> tokens are represented with the actual
symbol. Optional elements are enclosed with square brackets (<l eft bracket > and <ri ght bracket >).
Multiple options for a required element are enclosed with braces (<l eft brace> and <ri ght brace>).
Alternative tokens are separated with the vertical bar (<verti cal bar >). Atthe end of each function definition,
the standard which specifies the function is noted in parentheses as JIDBC or HyperSQL, unless the function isin the
SQL/Foundation part of the SQL Standard.

142

HyperS@L Built In Functions

String and Binary String Functions

In SQL, there are three kinds of string: character, binary and bit. The units are respectively characters, octets, and
bits. Each kind of string can be in different data types. CHAR, VARCHAR and CLOB are the character data types.
BINARY, VARBINARY and BLOB arethe binary datatypes. BIT and BIT VARYING arethe bit string types. In all
string functions, the position of aunit of the string within the whole string is specified from 1 to the length of the whole
string. Inthe BNF, <char val ue expr > indicates any valid SQL expression that evaluates to a character type.
Likewise, <bi nary val ue expr> indicatesabinary typeand <num val ue expr > indicatesanumeric type.

ASCII

ASCI | (<char val ue expr>)

Returns an INTEGER equal to the ASCII code value of the first character of <char val ue expr>. (JDBC)
CHAR (<UNI CODE code>)

The argument isan INTEGER. Returns a character string containing a single character that has the specified <UNI -
CODE code>, whichisan integer. ASCII codes are a subset of the allowed values for <UNI CODE code>. (JDBC)

CONCAT
CONCAT (<char value expr 1>, <char val ue expr 2>)
CONCAT (<binary val ue expr 1>, <binary val ue expr 2>)

The arguments are character strings or binary strings. Returns a string formed by concatenation of the arguments.
Equivalent to the SQL concatenation expression<val ue expr 1> || <val ue expr 2>.(JDBC)

DIFFERENCE
Dl FFERENCE (<char val ue expr 1>, <char val ue expr 2>)

Theargumentsare character strings. Convertstheargumentsinto SOUNDEX codes, and returnsan INTEGER between
0-4 which indicates how similar the two SOUNDEX value are. If the values are the same, it returns 4, if the values
have no similarity, it returns 0. In-between values are returned for partial similarity. (JDBC)

INSERT
I NSERT (<char value expr 1>, <offset>, <length> <char value expr 2>)

Returns a character string based on <char val ue expr 1>inwhich <l engt h> characters have been removed
from the <of f set > position and in their place, thewhole<char val ue expr 2> iscopied. Equivalent to SQL/
Foundation OVERLAY(<char val ue expr1> PLACING < char val ue expr2> FROM <of f set >
FOR <l engt h>) . (JDBC)

HEXTORAW
HEXTORAW <char val ue expr>)

Returns a BINARY string formed by translation of hexadecimal digits and letters in the <char val ue expr>.
Each character of the<char val ue expr > must beadigit or aletterinthe A |B |C | D | E | F set. Each byte of
theretired binary string is formed by translating two hex digits into one byte. (HyperSQL)

LCASE

LCASE (<char val ue expr>)

143

HyperS@L Built In Functions

Returnsacharacter string that isthelower caseversion of the<char val ue expr >. Equivalent to SQL/Foundation
LOAER (<char val ue expr>).(JDBC)

LEFT
LEFT (<char val ue expr>, <length>)

Returns a character string consisting of the first <I engt h> characters of <char val ue expr>. Equivaent to
SQL/Foundation SUBSTRI NG <char val ue expr> FROM 0 FOR <l engt h>) . (JDBC)

LENGTH
LENGTH (<char val ue expr>)

Returns as a BIGINT value the number of charactersin <char val ue expr>. Equivalent to SQL/Foundation
CHAR_LENGTH(<char val ue expr>).(JDBC)

LOCATE
LOCATE (<char val ue expr 1>, <char value expr 2> [, <offset>])

Returnsasa BIGINT value the starting position of the first occurrence of <char val ue expr 1> within<char
val ue expr 2>.If <of f set > is specified, the search begins with the position indicated by <of f set >. If the
search is not successful, 0 is returned. Equivalent to SQL/Foundation POSI TI ON(<char val ue expr 1> IN
<char val ue expr 2>).(JDBC)

LTRIM
LTRIM (<char val ue expr>)

Returns a character string based on <char val ue expr > with the leading space characters removed. Equivalent
to SQL/Foundation TRI M| LEADING ' ' FROM <char val ue expr>). (JDBC)

RAWTOHEX
RAWICHEX(<bi nary val ue expr>)

Returns a character string composed of hexadecimal digits representing the bytesinthe<bi nary val ue expr>.
Each byte of the<bi nary val ue expr > istrandated into two hex digits. (HyperSQL)

REGEXP_MATCHES
REGEXP_NMATCHES (<char val ue expr>, <regul ar expression>)

Returnstrueif the <char value expr> matches the <regular expression>. The <regular expression> isdefined according
to Java language rules. (HyperSQL)

REPEAT

REPEAT (<char val ue expr>, <count>)

Returns a character string based on <char val ue expr >, repeated <count > times. (JDBC)
REPLACE

REPLACE (<char val ue expr 1>, <char value expr 2>, <char value expr 3>)

Returns a character string based on <char val ue expr 1> where each occurrence of <char val ue expr
2> has been replaced with acopy of <char val ue expr 3>.(JDBC)

144

HyperS@L Built In Functions

REVERSE

REVERSE (<char val ue expr>)

Returns a character string based on <char val ue expr > with charactersin the reverse order. (HyperSQL)
RIGHT

RI GHT (<char val ue expr>, <count>)

Returns a character string consisting of the last <count > charactersof <char val ue expr >. (JDBC)
RTRIM

RTRI M (<char val ue expr>)

Returns a character string based on <char val ue expr > with the trailing space characters removed. Equivalent
to SQL/Foundation TRI M TRAI LI NG ' ' FROM <char acter string>).(JDBC)

SOUNDEX
SOUNDEX (<char val ue expr>)

Returns afour character code representing the sound of <char val ue expr >. The US census algorithm is used.
For example the soundex value for Washington is W252. (JDBC)

SPACE

SPACE (<count >)

Returns a character string consisting of <count > spaces. (JDBC)

SUBSTR

{ SUBSTR | SUBSTRING } (<char val ue expr>, <offset>, <length>)

The JDBC version of SQL/Foundation SUBSTRI NGreturns a character string that consists of <I engt h> characters
from<char val ue expr> starting at the <of f set > position. (JDBC)

UCASE
UCASE (<char val ue expr>)

Returnsacharacter string that isthelower caseversion of the<char val ue expr >. Equivalent to SQL/Foundation
UPPER(<char val ue expr>) .(JDBC)

CHARACTER_LENGTH

{ CHAR LENGTH | CHARACTER LENGTH } (<char val ue expressi on>[USI NG{ CHARACTERS
| OCTETS }])

OCTET_LENGTH
OCTET_LENGTH (<string val ue expression>)
BIT_LENGTH

BI T_LENGTH (<string val ue expression>)

145

HyperS@L Built In Functions

The CHAR_LENGTH or CHARACTER LENGTH function can be used with character strings, while
OCTET_LENGTH can be used with character or binary stringsand BIT_LENGTH can be used with character, binary
and hit strings.

All functionsreturn aBIGINT value that measures the length of the string in the given unit. CHAR_LENGTH counts
characters, OCTET_LENGTH counts octets and BIT_LENGTH counts bits in the string. For CHAR_LENGTH, if
[USI NG OCTETS] isspecified, the octet count isreturned. (Foundation)

OVERLAY

OVERLAY (<char val ue expr 1> PLACI NG <char val ue expr 2>

FROM <start position> [FOR <string length>] [USING CHARACTERS])
OVERLAY (<binary val ue expr 1> PLACI NG <bi nary val ue expr 2>

FROM <start position> [FOR <string length>])

Thecharacter version of OVERLAY returnsacharacter stringbased on<char val ue expr 1>inwhich<stri ng
| engt h> characters have been removed from the <st art posi ti on> and in their place, the whole <char
val ue expr 2>iscopied.

The binary version of OVERLAY returns abinary string formed in the same manner as the character version. (Foun-
dation)

POSITION
PCSI TION (<char val ue expr 1> I N <char val ue expr 2> [USING CHARACTERS])
PCSI TION (<binary val ue expr 1> IN <binary val ue expr 2>)

The character and binary versions of POSITION search the string value of the second argument for thefirst occurrence
of the first argument string. If the search is successful, the position in the string is returned as a BIGINT. Otherwise
zerois returned.

SUBSTRING

SUBSTRI NG (<char value expr> FROM <start position> [FOR <string |length>]
[USI NG CHARACTERS])

SUBSTRI NG (<bi nary val ue expr> FROM <start position> [FOR <string length>1])

The character version of SUBSTRING returns a character string that consists of the characters of the<char val ue
expr> from<start position>.Iftheoptional <string | engt h>isspecified, only<string | engt h>
characters are returned.

The binary version of SUBSTRING returns a binary string in the same manner. (Foundation)
TRIM

TRIM ([[LEADING | TRAILING | BOTH] [<trim character>] FROM] <char val ue
expr>)

TRIM([[LEADING| TRAILING| BOTH] [<trimoctet>] FROM] <binary val ue expr>)

The character version of TRIM returns a character string based on <char val ue expr >. Consecutive instances
of <trim character> areremoved from the beginning, the end or both ends of the<char val ue expr>
depending on the value of the optional first qualifier [LEADI NG | TRAILING | BOTH]. If no qualifier

146

HyperS@L Built In Functions

is specified, BOTH isused asdefault. If [<trim character>] isnot specified, the space character is used
as defaullt.

The binary version of TRIM returns a binary string based on <bi nary val ue expr >. Consecutive instances of
<trim octet> areremoved in the same manner as in the character version. If [<trim octet>] isnot
specified, the O octet is used as default. (Foundation)

Numeric Functions

ABS

ABS (<numval ue expr> | <interval value expr>)

Returns the absolute value of the argument as a value of the same type. (JDBC and Foundation)
ACOS

ACOS (<num val ue expr>)

Returns the arc-cosine of the argument in radians as a value of DOUBLE type. (JDBC)
ASIN

ASIN (<num val ue expr>)

Returns the arc-sine of the argument in radians as a value of DOUBLE type. (JDBC)
ATAN

ATAN (<num val ue expr>)

Returns the arc-tangent of the argument in radians as a value of DOUBLE type. (JDBC)
ATAN2

ATAN2 (<num val ue expr 1>, <num val ue expr 2>)

The<num val ue expr 1>and<num val ue expr 2> expressthex andy coordinates of a point. Returns
the angle, in radians, representing the angle coordinate of the point in polar coordinates, as a value of DOUBLE type.
(JDBC)

CEILING
{ CEIL | CEILING} (<num value expr>)

Returns the smallest integer greater than or equal to the argument. If the argument is exact numeric then the result is
exact numeric with ascale of 0. If the argument is approximate numeric, then the result is of DOUBLE type. (JDBC
and Foundation)

BITAND
Bl TAND (<num val ue expr 1>, <num val ue expr 2>)
Bl TAND (<bit value expr 1>, <bit value expr 2>)
BITOR

Bl TOR (<num val ue expr 1>, <num val ue expr 2>)

147

HyperS@L Built In Functions

BI TOR (<bit value expr 1> <bit value expr 2>)
BITXOR

Bl TXOR (<num val ue expr 1>, <num val ue expr 2>)
BI TXOR (<bit value expr 1>, <bit value expr 2>)

These three functions perform the bit operations: OR, AND, XOR, on two values. Thevalues are either integer values,
or hit strings. The result is an integer value of the same type as the arguments, or a bit string of the same length as
the argument. Each hit of the result is formed by performing the operation on corresponding bits of the arguments.

(HyperSQL)

COS

COs (<numval ue expr>)

Returns the cosine of the argument (an angle expressed in radians) as a value of DOUBLE type. (JDBC)
CcoT

COT (<numval ue expr>)

Returns the cotangent of the argument as a value of DOUBLE type. The<num val ue expr > represents an angle
expressed in radians. (JDBC)

DEGREES
DEGREES (<num val ue expr>)

Converts the argument (an angle expressed in r adi ans) into degrees and returns the value in the DOUBLE type.
(JDBC)

EXP

EXP (<num val ue expr>)

Returns the exponential value of the argument as avalue of DOUBLE type. (JDBC and Foundation)
FLOOR

FLOOR (<num val ue expr>)

Returnsthe largest integer that isless than or equal to the argument. If the argument is exact numeric then theresult is
exact numeric with ascale of 0. If the argument is approximate numeric, then the result is of DOUBLE type. (JDBC
and Foundation)

LN

LN (<num val ue expr>)

Returns the natural logarithm of the argument, as a value of DOUBLE type. (Foundation)
LOG

LOG (<num val ue expr>)

Returns the natural logarithm of the argument, as a value of DOUBLE type. (JDBC)

148

HyperS@L Built In Functions

LOG10

LOGLO (<num val ue expr>)

Returns the base 10 logarithm of the argument as a value of DOUBLE type. (JDBC)
MOD (<num val ue expr 1>, <num val ue expr 2>)

MOD

Returnsthe remainder (modulus) of <num val ue expr 1> dividedby <num val ue expr 2>. Thedatatype
of the returned value is the same as the second argument. (JDBC and Foundation)

Pl

Pl ()

Returns the constant pi as avalue of DOUBLE type. (JDBC)

POWER

POAER (<num val ue expr 1>, <num val ue expr 2>)

Returns the value of <num val ue expr 1> raised to the power of <i nt val ue expr 2> asavaue of
DOUBLE type. (JDBC and Foundation)

RADIANS
RADI ANS (<num val ue expr>)

Converts the argument (an angle expressed in degr ees) into radians and returns the value in the DOUBLE type.
(JDBC)

RAND
RAND ([<int value expr>1])

Returns arandom value in the DOUBLE type. Theoptional [<i nt val ue expr>] isused asseed value. In
HyperSQL each session has a separate random number generator. Thefirst call that uses a seed parameter setsthe seed
for subsequent calls that do not include a parameter. (JDBC)

ROUND
ROUND (<num val ue expr>, <int value expr>)

The<num val ue expr > isof the DOUBLE type. Thefunction returnsa DOUBLE value which isthe value of the
argument rounded to<i nt val ue expr > placesright of the decimal point. If <i nt val ue expr > isnegative,
thefirst argument isrounded to <i nt val ue expr > placesto the left of the decimal point. (JDBC)

SIGN
SIGN (<num val ue expr>)

Returns an INTEGER, indicating the sign of the argument. If the argument is negative then -1 isreturned. If it is equal
to zero then O isreturned. If the argument is positive then 1 isreturned. (JDBC)

SIN

149

HyperS@L Built In Functions

SIN (<num val ue expr>)

Returns the sine of the argument (an angle expressed in radians) as a value of DOUBLE type. (JDBC)
SQRT

SQRT (<num val ue expr>)

Returns the square root of the argument as a value of DOUBLE type. (JDBC and Foundation)

TAN

TAN (<num val ue expr>)

Returns the tangent of the argument (an angle expressed in radians) as a value of DOUBLE type. (JDBC)
TRUNCATE

TRUNCATE (<num val ue expr>, <int value expr>)

Returns a value in the same type as <num val ue expr>. The value is rounded by replacing digits with zeros
from <i nt val ue expr > places right of the decimal point to the end. If <i nt val ue expr > is negative,
ABS(<int val ue expr>) digitsto left of the decimal point and all digitsto theright of the decimal points are
replaced with zeros. Results of calling TRUNCATE with 12345.6789 with (-2, 0, 2, 4) are (12300.0000, 12345.0000,
12345.6700, 12345.6789). (JDBC)

Date Time and Interval Functions

TIMEZONE

TI MEZONE()

Returns the current time zone for the session. Returnsan INTERVAL HOUR TO MINUTE value. (HyperSQL)
SESSION_TIMEZONE

SESSI ON_TI MEZONE()

Returnsthe default time zone for the current session. Returnsan INTERVAL HOUR TO MINUTE value. (HyperSQL)
DATABASE_TIMEZONE

DATABASE_TI MEZONE()

Returns the time zone for the database engine. Thisis based on where the database server processis located. Returns
an INTERVAL HOUR TO MINUTE value. (HyperSQL)

EXTRACT
EXTRACT (<extract field> FROM <extract source>)

<extract field>::=YEAR| MONTH| DAY | HOUR| M NUTE | DAY _OF WEEK | WEEK_OF YEAR
| QUARTER | DAY_OF YEAR | DAY_OF_MONTH |

TI MEZONE_HOUR | TI MEZONE_M NUTE | SECOND | SECONDS_SI NCE_M DNI GHT |

DAY_NAMVE | MONTH_NAME

150

HyperS@L Built In Functions

<extract source> ::= <datatime value expr> | <interval value expr>

The EXTRACT function returns afield or element of the <ext ract sour ce>. The<extract source>isa
datetime or interval expression. Thetype of thereturn valueisBIGINT for most of the <ext ract fi el d> options.
The exceptions is SECOND where a DECIMAL value is returned which has the same precision as the datetime or
interval expression. Thefield valuesDAY_NAME or MONTH_NAME result in acharacter string. When MONTH_NAMVE
is specified, astring in the range January - December isreturned. When DAY_NAME is specified, astring in the range
Sunday -Saturday is returned.

If the<ext ract source>isFROM <dat ati ne val ue expr >, different groupsof <ext r act sour ce>can
be used depending on the data type of the expression. The TI MEZONE_HOUR | TI MEZONE_M NUTE options are
valid only for TIME WITH TIMEZONE and TIMESTAMP WITH TIMEZONE data types. The HOUR | M NUTE
| SECOND | SECONDS M DNI GHT options, are valid for TIME and TIMESTAMP types. The rest of the fields
arevalid for DATE and TIMESTAMP types.

If the<extract source>isFROM <i nterval val ue expr>,the<extract fi el d>mustbeoneofthe
fields of the INTERVAL type of the expressions. The YEAR | MONTH options may be valid for INTERVAL types
based on months. The DAY | HOUR | M NUTE | SECOND | SECONDS_ M DNI GHT options may be valid
for INTERVAL types based on seconds. For example, DAY | HOUR | M NUTE arethe only valid fields for the
INTERVAL DAY TO MINUTE datatype. (Foundation with HyperSQL extensions)

CURRENT_DATE

CURRENT _DATE

CURRENT_TIME

CURRENT _TIME [(<tine precision>)]
LOCALTIME

LOCALTIME [(<time precision>)]
CURRENT_TIMESTAMP

CURRENT_TI MESTAMP [(<tinestanp precision>) |
LOCALTIMESTAMP

LOCALTI MESTAWP [(<tinmestanp precision>)]

These datetime functions return the datetime val ue representing the moment the functioniscalled. CURRENT_DATE
returns a value of DATE type. CURRENT_TIME returns avalue of TIME WITH TIME ZONE type. LOCALTIME
returns avalue of TIME type. CURRENT_TIMESTAMP returns avalue of TIMESTAMP WITH TIME ZONE type.
LOCALTIMESTAMP returns a value of TIMESTAMP type. If theoptional [(<tine precision>)] or
[(<timestanp precision>)] isused, thenthe returned value has the specified fraction of the second
precision. (Foundation)

CURDATE

CURDATE ()

Thisfunction isequivalentto CURRENT _DATE. (JDBC)
CURTIME

CURTI ME ()

151

HyperS@L Built In Functions

Thisfunction isequivalentto LOCALTI ME. (JDBC)
DAYNAME
DAYNAME (<datatinme val ue expr>)

Thisfunction is equivalent to EXTRACT (DAY _NAME FROM ...) Returnsastringin the range of Sunday
- Saturday. (JDBC)

DAYOFMONTH
DAYOFMONTH (<datetinme val ue expr>)

This function is equivalent to EXTRACT (DAY_COF_MONTH FROM ...) Returnsan integer valuein the
range of 1-31. (JDBC)

DAYOFWEEK
DAYOFVEEEK (<datetine val ue expr>)

Thisfunction is equivalent to EXTRACT (DAY _OF WEEK FROM ...) Returnsaninteger valuein therange
of 1-7. Thefirst day of the week is Sunday. (JDBC)

DAYOFYEAR
DAYOFYEAR (<datetime val ue expr>)

Thisfunction is equivalent to EXTRACT (DAY_COF YEAR FROM ...) Returnsaninteger valuein therange
of 1-366. (JDBC)

HOUR
HOUR (<datetinme val ue expr>)

This function is equivalent to EXTRACT (HOUR FROM ...) Returnsan integer value in the range of 0-23.
(JDBC)

MINUTE
M NUTE (<datetinme val ue expr>)

This function is equivalent to EXTRACT (M NUTE FROM ...) Returnsan integer value in the range of
0-59. (JDBC)

MONTH
MONTH (<datetine val ue expr>)

Thisfunction is equivalent to EXTRACT (MONTH FROM ...) Returnsan integer valuein the range of 1-12.
(JDBC)

MONTHNAME
MONTHNAME (<datetime val ue expr>)

This function is equivalent to EXTRACT (NAME_OF MONTH FROM ...) Returnsastring in the range of
January - December. (JDBC)

152

HyperS@L Built In Functions

NOW

NOW ()

Thisfunction isequivalent to LOCAL_TI MESTAMP.

QUARTER

QUARTER (<datetine val ue expr>)

Thisfunctionisequivalent to EXTRACT (QUARTER FROM ...) Returnsanintegerintherangeof 1- 4. (JDBC)
SECOND

SECOND (<datetime val ue expr>)

Thisfunction isequivalent to EXTRACT (SECOND FROM ...) Returnsan integer or decimal in the range of
0 - 59, with the same precision as the <datetime value expr>. (JDBC)

SECONDS SINCE_MIDNIGHT
SECONDS_SI NCE_M DNI GHT (<dateti me val ue expr>)

Thisfunction is equivalent to EXTRACT (SECONDS_SI NCE M DNI GHT FROM ...) Returnsaninteger
in the range of 0 - 86399. (HyperSQL)

WEEK
VWEEK (<datetinme val ue expr>)

This function is equivalent to EXTRACT (WEEK OF YEAR FROM ...) Returnsan integer in the range
of 1-54. (JDBC)

YEAR

YEAR (<datetine val ue expr>)

Thisfunctionisequivalentto EXTRACT (YEAR FROM ...) Returnsaninteger intherangeof 1-9999. (JDBC)
TIMESTAMPADD

TI MESTAMPADD (<tsi datetime field> <nuneric val ue expressi on>, <datetine val ue
expr>)

TIMESTAMPDIFF

TI MESTAMPDI FF (<tsi datetime field> <datetine value expr 1> <datetine val ue
expr 2>)

<tsi datetime field> ::= SQL_TSI _FRAC SECOND | SQL_TSI _SECOND | SQL_TSI _M NUTE
| SQL_TSI _HOUR | SQL_TSI DAY | SQ._TSI WEEK | SQ._TSI _MONTH | SQL_TSI QUARTER
| SQL_TSI _YEAR

HyperSQL supportsfull SQL Standard datetimefeatures. It supports adding integers representing units of timedirectly
to datetime values using the arithmetic plus operator. It also supports subtracting one <dat eti e val ue expr>
from another in the given units of days using the minus operator. An example of <dat eti me val ue expr> +
<nuneric val ue expression> <datetine field> isLOCAL_TI MESTAMP + 5 DAY. Anexample

153

HyperS@L Built In Functions

of (<datetine value expr> - <nuneric value expression>) <datetine field> is
(CURRENT _DATE - DATE '2008-08-8") MONTH which returnsthe number of calendar months between
the two dates.

The two JDBC functions, TI MESTAMPADD and TI MESTAMPDI FF perform the same function as above SQL ex-
pressions. The field names are keywords and are different from those used in the EXTRACT functions. These hames
are valid for use only when calling these two functions. The return value for TIMESTAMPADD is of the same type
as the datetime argument used. The return type for TIMESTAMPDIFF is always BIGINT, regardless of the type of
arguments. The two datetime arguments of TIMESTAMPDIFF should be of the same type. (JDBC)

DATEADD

DATEADD (<field> <numeric value expr>, <datetime value expr>)
DATEDIFF

DATEDI FF (<field>, <datetine value expr 1> datetine value expr 2>)
<field> ::="'yy" | 'mmd | 'dd" | "hh* | "m" | "ss" | '"ns'

The DATEADD and DATEDIFFfunctionsareaternativesto TIMESTAMPADD and TIMESTAMPDIFF, with fewer
available field options. The field names are specified as strings, rather than keywords. The fields trandate to Y EAR,
MONTH, DAY, HOUR, MINUTE, SECOND and MILLISECOND. (HyperSQL}

TO_CHAR
TO CHAR(<datetine value expr>, <char val ue expr>)

This function formats a datetime or numeric value to the format specified by the pattern given in the second argument.
The pattern can contain pattern elementsfrom thelist given below, plus punctuation and space characters. An example,
including the result, is given below:

TO CHAR (TI MESTAMP 2008- 02- 01 20: 30: 40", 'YYYY BC MONTH, DAY HH)

2008 AD February, Friday 8

Theformat isinternaly trandatedto aj ava. t ext . Si npl eDat eFor nat format string. Any character sequences
not listed below are included in the Java format string and may cause unexpected results or errors. Therefore unsup-
ported format strings should not be used. The supported format components are as follows:

Table10.1. TO CHAR Values

BC| B.C. | AD| A D Returns AD for common era and BC for before common era
RRRR 4-digit year

YYYY 4-digit year

I YYY 4-digit year

YY 2 digit year

Y 2 digit year

I YYY 4-digit year

MM Month (01-12)

MON Short three-letter name of month

MONTH Name of month

154

HyperS@L Built In Functions

WV Week of year (1-53) whereweek 1 starts on the first day of the year and continues
to the seventh day of the year.

W Week of month (1-5) where week 1 starts on the first day of the month and ends
on the seventh.

W Week of year (1-52 or 1-53) based on the SO standard.

DAY Name of day.

DD Day of month (1-31).

DDD Day of year (1-366).

DY Short three-letter name of day.

HH Hour of day (0-11).

HH12 Hour of day (0-11).

HH24 Hour of day (0-23).

M Minute (0-59).

SS Second (0-59).

FF Fractional seconds.

Array Functions

Array functions are speciaised functions with ARRAY parameters.

CARDINALITY

CARDI NALI TY(<array val ue expr>)

Returns the element count for the given array argument. (Foundation)
MAX_CARDINALITY

MAX_CARDI NALI TY(<array val ue expr>)

Returns the maximum allowed element count for the given array argument. (Foundation)
TRIM_ARRAY

TRI M_ARRAY(<array val ue expr>, <num val ue expr>)

Returns a new array that contains the elements of the <array val ue expr > minus the number of elements
specified by the<num val ue expr>. Elementsare discarded from the end of the array. (Foundation)

General Functions

General functions can take different types of arguments. Some General Functions accept a variable number of argu-
ments.

COALESCE
COALESCE(<val ue expr 1>, <value expr 2> [, ...])

Returns<val ue expr 1> ifitisnot null, otherwise returns<val ue expr 2> if not null and so on. The type
of both arguments must be comparable. (Foundation)

155

HyperS@L Built In Functions

CONVERT
CONVERT (<val ue expr> , <data type>)

<data type> ::= { SQ_BIGANT | SQ_BINARY | SQ_BIT |SQ._BLOB | SQ._BOOLEAN
| SQL_CHAR | SQ_CLOB | SQ._DATE | SQL_DECI MAL | SQL_DATALINK | SQ._DCOUBLE |
SQ_FLOAT | SQL_I NTEGER | SQ._LONGVARBI NARY | SQL_LONGNVARCHAR | SQL_LONGVARCHAR
| SQL_NCHAR | SQL_NCLOB | SQ_NUMERIC | SQ_NVARCHAR | SQL_REAL | SQ._ROWD
| SQL_SQXM. | SQ_SMALLINT | SQ_TIME | SQ_TIMESTAMP | SQL_TINYINT |
SQL_VARBI NARY | SQ._VARCHAR} [(<precision, length or scale parameters>)]

The CONVERT function is a JDBC escape function, equivalent to the SQL standard CAST expression. It converts
the<val ue expr >intothegiven<dat a t ype> andreturnsthevalue. The<dat a t ype> optionsare synthetic
names made by prefixing type names with SQL_. Some of the <dat a t ype> options represent valid SQL types,
but some are based on non-standard type names, namely { SQL_LONGNVARCHAR | SQ._LONGVARBI NARY |
SQL_LONGVARCHAR | SQL_TI NYI NT }. None of the synthetic names can be used in any other context than
the CONVERT function.

The definition of CONVERT in the JDBC Standard does not allow the precision, scale or length to be specified. This
is required by the SQL standard for BINARY, BIT, BLOB, CHAR, CLOB, VARBINARY and VARCHAR types
and is often needed for DECIMAL and NUMERIC. Therefore, HyperSQL allows the use of precision, scale or length
for the type definition when they are valid for the type definition. HyperSQL also alows the use of real type names
(without the SQL__ prefix). (JDBC)

DECODE

DECODE(<val ue expr nmmin> <value expr match 1>, <value expr result 1> [...,]
[, <value expr default>])

DECODE takes at least 3 arguments. The<val ue expr mai n>iscompared with <val ue expr match 1>
and if it matches, <val ue expr result 1>isreturned. If there are additional pairsof <val ue expr match
n>and <val ue expr result n>, comparison is repeated until a match is found the result is returned. If no
match isfound, the<val ue expr def aul t > isreturned if it is specified, otherwise NULL isreturned. The type

of thereturn value is a combination of the types of the<val ue expr result ... >arguments. (HyperSQL)
GREATEST
GREATEST(<val ue expr 1>, [<value expr ...> ...])

The GREATEST function takes one or more arguments. It compares the arguments with each other and returns the
greatest argument. The return type is the combined type of the arguments. Arguments can be of any type, so long as
they are comparable. (HyperSQL)

IFNULL
| FNULL(<val ue expr 1>, <val ue expr 2>)

Returns<val ue expr 1>ifitisnotnull, otherwisereturns<val ue expr 2>.Thetype of both arguments must
be the same. Equivalent to SQL Standard COALESCE(<val ue expr 1>, <val ue expr 2>) function. (JDBC)

LEAST
LEAST(<val ue expr 1>, [<value expr ...> ...])

The LEAST function takes one or more arguments. |t compares the arguments with each other and returnsthe smallest
argument. The return type is the combined type of the arguments. Arguments can be of any type, so long as they are
comparable. (HyperSQL)

156

HyperS@L Built In Functions

NULLIF
NULLI F(<val ue expr 1>, <value expr 2>)

Returns <val ue expr 1> if itisnot equal to <val ue expr 2>, otherwise returns null. The type of both
arguments must be the same. This function is a shorthand for a specific CASE expression. (Foundation)

NVL
NVL(<val ue expr 1>, <value expr 2>)

Returns<val ue expr 1> ifitisnot null, otherwisereturns<val ue expr 2>. Thetype of the return valueis
the combined type of the two value expressions. For example, if <value expr 1>isan INTEGER column and <val ue
expr 2>isaDOUBLE constant, thereturntypeis DOUBLE. Thisfunctionisthe sameasIFNULL and COALESCE

(HyperSQL)
System Functions

CRYPT_KEY
CRYPT_KEY(<val ue expr 1>, <val ue expr 2>)

Returnsabinary string representation of acryptography key for the given cipher and cyptography provider. The cipher
specificationisspecified by <val ue expr 1>andtheprovider by <val ue expr 2>.Tousethedefault provider,
specify null for <val ue expr 2>.(HyperSQL)

IDENTITY
| DENTI TY ()

Returnsthelast IDENTITY valueinserted into arow by the current session. The statement, CALL IDENTITY () can be
made after an INSERT statement that inserts arow into atable with an IDENTITY column. The CALL IDENTITY()
statement returnsthe last IDENTITY value that wasinserted into atable by the current session. Each session manages
this function call separately and is not affected by insertsin other sessions. The statement can be executed as a direct
statement or a prepared statement. (HyperSQL)

DATABASE

DATABASE ()

Returns the file name (without directory information) of the database. (JDBC)
DATABASE_VERSION

DATABASE_VERSI ON ()

Returns the full version string for the database engine. For example, 2.0.1. (JDBC)
USER

USER ()

Equivalent to the SQL function CURRENT _USER. (JDBC)

CURRENT_USER

CURRENT_USER

157

HyperS@L Built In Functions

CURRENT_ROLE
CURRENT _ROLE
SESSION_USER

SESSI ON_USER
SYSTEM_USER
SYSTEM _USER
CURRENT_SCHEMA
CURRENT_SCHEMA
CURRENT_CATALOG
CURRENT _CATALOG
These functions return the named current session attribute. They are all SQL Standard functions.

The CURRENT_USER is the user that connected to the database, or a user subsequently set by the SET AUTHO-
RIZATION statement.

SESSION_USER isthe same as CURRENT_USER

SYSTEM_USER s the user that connected to the database. It is not changed with any command until the session
isclosed.

CURRENT_SCHEMA is default schema of the user, or a schema subsequently set by the SET SCHEMA command.
CURRENT_CATALOG isawaysthe same within agiven HyperSQL database and indicates the name of the catal og.
ISAUTOCOMMIT

| SAUTOCOW T()

Returns TRUE if the session is in autocommit mode. (HyperSQL)

ISREADONLY SESSION

| SREADONLYSESSI ON()

Returns TRUE if the sessionisin read only mode. (HyperSQL)

ISREADONLYDATABASE

| SREADONL YDATABASE()

Returns TRUE if the database is aread only database. (HyperSQL)

ISREADONLYDATABASEFILES

| SREADONL YDATABASEFI LES()

Returns TRUE if the database is aread-only files database. In thiskind of database, it is possible to modify the data,
but the changes are not persisted to the database files. (HyperSQL)

158

HyperS@L Built In Functions

ISOLATION_LEVEL
| SOLATI ON_LEVEL()

Returns the current transaction isolation level for the session. Returns either READ COMMITTED or SERIALIZ-
ABLE asastring. (HyperSQL)

SESSION_ISOLATION_LEVEL
SESSI ON_| SOLATI ON_LEVEL()

Returns the default transaction isolation level for the current session. Returns either READ COMMITTED or SERI-
ALIZABLE asastring. (HyperSQL)

DATABASE_ISOLATION_LEVEL
DATABASE_| SOLATI ON_LEVEL()

Returns the default transaction isolation level for the database. Returns either READ COMMITTED or SERIALIZ-
ABLE asastring. (HyperSQL)

TRANSACTION_CONTROL
TRANSACTI ON_CONTROL()

Returns the current transaction model for the database. Returns LOCK S, MVLOCKS or MV CC as a string. (Hyper-
SQL)

159

HyperS@L

Chapter 11. System Management and
Deployment Issues
Fred Toussi, The HSQL Development Group

$Revision: 3630 $

Copyright 2002-2010 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2010-06-06 10:44:27 -0400 (Sun, 06 Jun 2010) $

Mode of Operation and Tables

HyperSQL has many modes of operation and features that allow it to be used in very different scenarios. Levels of
memory usage, speed and accessibility by different applications are influenced by how HyperSQL is deployed.

Mode of Operation

The decision to run HyperSQL as a separate server process or as an in-process database should be based on the
following:

* When HyperSQL is run as a server on a separate machine, it isisolated from hardware failures and crashes on the
hosts running the application.

» When HyperSQL isrun as a server on the same machine, it isisolated from application crashes and memory leaks.

 Server connections are slower than in-process connections due to the overhead of streaming the datafor each JIDBC
cal.

* You can reduce client/server traffic using SQL Stored procedures to reduce the number of JDBC execute calls.

» During development, it is better to use a Server with server.silent=false, which displays the statements sent to the
server on the console window.

» Toimprove speed of execution for statementsthat are executed repeatedly, reuse aparameterized PreparedStatement
for the lifetime of the connections.

Tables

TEXT tables are designed for special applications where the data has to be in an interchangeable format, such as CSV
(comma separated values). TEXT tables should not be used for routine storage of data.

MEMORY tables and CACHED tables are generally used for data storage. The difference between the two is as
follows:

» Thedatafor al MEMORY tablesisread from the * .script file when the database is started and stored in memory.
In contrast the data for cached tables is not read into memory until the table is accessed. Furthermore, only part of
the data for each CACHED tableis held in memory, allowing tables with more data than can be held in memory.

» When the database is shutdown in the normal way, all the data for MEMORY tables is written out to the disk. In
comparison, the datain CACHED tables that has changed is written out during operation and at shutdown.

160

HyperS@L System Management and Deployment
Issues

» Thesize and capacity of the data cache for all the CACHED tables is configurable. This makes it possible to allow
al the datain CACHED tables to be cached in memory. In this case, speed of accessis good, but slightly slower
than MEMORY tables.

» For normal applications it is recommended that MEMORY tables are used for small amounts of data, leaving
CACHED tablesfor large data sets. For special applicationsin which speed is paramount and alarge amount of free
memory is available, MEMORY tables can be used for large tables as well.

Large Objects

HyperSQL 2.0 supports dedicated storage and access to BLOB and CL OB objects. These objects can have huge sizes.
BLOB or CLOB is specified as the type of acolumn of the table. Afterwards, rows can be inserted into the table using
aPreparedStatement for efficient transfer of large LOB data to the database. In mem: catalogs, CLOB and BLOB data
is stored in memory. In file: catalogs, this data is stored in a single separate file which has the extension *.Iobs. The
size of thisfile can grow to huge, terabyte figures.

L OB data should be store in the database using a JDBC PreparedStatement object. The streaming methods send the
L OB to the database in one operation as a binary or character stream. Inside the database, the disk space is allocated
as needed and the datais saved asit is being received. LOB data should be retrieved from the database using a JDBC
ResultSet method. When a streaming method is used to retrieve aLOB, it isretrieved in large chunks in a transparent
manner. LOB data can also be stored by calling a JIDBC method with String or byte[] argument, but these methods
limit the size of the LOB that can be stored or retrieved.

LOB datais not duplicated in the database when alob is copied from one table to another. The disk space is reused
when aLOB isdeleted and is not contained in any table.

By using adedicated L OB store, HyperSQL achieves consistently high speeds (usually over 20MB / s) for both storage
and retrieval of LOBs.

The LOB catalog is stored in the database as a memory table. Therefore the amount of VM memory should be
increased when more than tens of thousands of LOBs are stored in the database.

Deployment context

The files used for storing HyperSQL database data are all in the same directory. New files are aways created and
deleted by the database engine. Two simple principles must be observed:

» The Java process running HyperSQL must have full privileges on the directory where the files are stored. This
include create and delete privileges.

» Thefile system must have enough spare room both for the ‘permanent’ and ‘temporary' files. The default maximum
size of the *.log file is 50MB. The *.data file can grow to up to 16GB (more if the default has been increased).
The .backup file can be up to the size of the *.datafile. The *.lobsfile can grow to several terabytes. The temporary
files created at the time of a SHUTDOWN can be equal in sizeto the *.script file and the .datafile.

Readonly Databases

A file: catalog can be made readonly permanently, or it can be opened as readonly. To make the database readonly,
the property, value pair, readonly=true can be added to the .properties file of the database.

It is also possible to open a normal database as readonly. For this, the property can be included in the URL of the
first connection to the database.

There is another option which allows MEMORY tables to be writable, but without persisting the changes at SHUT-
DOWN. This option is activated with the property, value pair, files_readonly= true, which can be added to the .prop-

161

HyperS@L System Management and Deployment
Issues

erties file of the database, or included in the URL of the first connection to the database. This option is useful for
running application tests which operate on a predefined dataset.

Memory and Disk Use

Memory used by the program can be thought of astwo distinct pools; memory used for table datawhich is not released
unless the data is deleted and memory that can be released or is released automatically, including memory used for
caching, building result sets and other internal operations such as storing the information needed for a rollback a
transaction.

Most VM implementations all ocate up to amaximum amount of memory (usually 64 MB by default). Thisamount is
generally not adequate when large memory tables are used, or when the average size of rowsin cached tablesislarger
than a few hundred bytes. The maximum amount of alocated memory can be set on the Java command line that is
used for running HyperSQL . For example, with Sun VM, parameter -Xmx256m increases the amount to 256 MB.

Table Memory Allocation

The memory used for aMEMORY tableisthe sum of memory used by each row. Each MEMORY tablerow isaJava
object that has 2 int or reference variables. It contains an array of objects for the fields in the row. Each field is an
object suchas| nt eger, Long, St ri ng, etc. In addition each index on the table adds anode object to the row. Each
node object has 6 int or reference variables. Asaresult, atable with just one column of type INTEGER will have four
objects per row, with atotal of 10 variables of 4 bytes each - currently taking up 80 bytes per row. Beyond this, each
extracolumn in the table adds at least a few bytes to the size of each row.

Result Set Memory Allocation

By default, al the rows in the result set are built in memory, so very large result sets may not be possible to build.
In server mode databases, by default, the result set memory is released from the server once the database serv-
er has returned the result set. in-process databases release the memory when the application program releases the
j ava. sql . Resul t Set object. Server modes require additional memory for returning result sets, as they convert
the full result set into an array of bytes which is then transmitted to the client.

HyperSQL 2.0 supports disk-based result sets. The commands, SET SESSI ON RESULT MEMORY ROWS <i n-
t eger > and SET DATABASE DEFAULT RESULT MEMORY ROWS <i nt eger > specify athreshold for the
number of rows. Resultswith row counts above the threshold are stored on disk. These settings also apply to temporary
tables and subquery tables.

When the setFetchSize() method of the Statement interface is used to limit the number rows fetched, the whole result
is held by the engine and is returned to the JDBC ResultSet in blocks of rows of the specified fetch size. Disk-based
result sets slow down the database operations and should be used only when absolutely necessary, perhaps with result
sets that are larger than tens of thousands of rows.

Temporary Memory Use During Operations

When UPDATE and DELETE queries are performed on CACHED tables, the full set of rows that are affected, in-
cluding those affected due to ON UPDATE actions, is held in memory for the duration of the operation. This means
it may not be possible to perform deletes or updates involving very large numbers of rows of CACHED tables. Such
operations should be performed in smaller sets.

When transactions support is enabled with SET AUTOCOMMIT FALSE, listsof all insert, delete or update operations
arestored in memory so that they can be undonewhen ROLLBACK isissued. For CACHED tables, only thetransaction
informationisheld in memory, not the actual rowsthat have changed. Transactionsthat span thousands of modification

162

HyperS@L System Management and Deployment
Issues

to data will take up alot of memory until the next COMMIT or ROLLBACK clears the list. Each row modification
uses less than 100 bytes until COMMIT.

When subqueries or views are used in SELECT and other statements, transient tables are created and populated by the
engine. If the SET SESSI ON RESULT MEMORY ROWS <i nt eger > statement has been used, these transient
tables are stored on disk when they are larger than the threshold.

Data Cache Memory Allocation

With CACHED tables, the data is stored on disk and only up to a maximum number of rows are held in memory at
any time. The default is up to 50,000 rows. The SET FILES CACHE ROWS command or the hsgldb.cache rows
connection property can be set to alter this amount. As any random subset of the rowsin any of the CACHED tables
can be held in the cache, the amount of memory needed by cached rows can reach the sum of the rows containing the
largest field data. For exampleif atable with 100,000 rows contains 40,000 rows with 1,000 bytes of datain each row
and 60,000 rows with 100 bytes in each, the cache can grow to contain 50,000 of the smaller rows, but as explained
further, only 10,000 or the large rows.

An additional property, hsgldb.cache size is used in conjunction with the hsgldb.cache rows property. This puts a
limit in bytes on the total size of rows that are cached. The default values is 10,000KB. (This is the size of binary
images of the rows and indexes. It translates to more actual memory, typically 2-4 times, used for the cache because
the datais represented by Java objects.)

If memory islimited, the hsgldb.cache_rows or hsgldb.cache_size database properties can be reduced. In the example
above, if the hsgldb.cache size is reduced from 10,000 to 5,000, it will allow the number of cached rows to reach
50,000 small rows, but only 5,000 of the larger rows.

Datafor CLOB and BLOB columnsis not cached and does not affect the CACHED table memory cache.

The use of Javanio file access method al so increases memory usage. Access with nio improves database update speed
and is used by default for data files up to 256 MB. For minimal memory use, nio access should be disabled.

Object Pool Memory Allocation

HyperSQL uses a set of fast pools for immutable objects such as Integer, Long and short String objects that are stored
in the database. In most circumstances, this reduces the memory footprint still further as fewer copies of the most
frequently-used objects are kept in memory. The object pools are shared among all databases in the VM. The size of
each pool can be modified only by altering and recompiling the or g. hsql db. st or e. Val uePool class.

Lob Memory Usage

Accessto lobsis aways performed in chunks, so it is perfectly possible to store and access a CLOB or BLOB that is
larger than the VM memory alocation. Early versions of HyperSQL 2.0 use memory-based tables for the lob catalog
(not the data). Therefore it is practical to store about 100,000 individual lobs in the database with the default VM
memory allocation. More lobs can be stored with larger VM memory allocations. The realistic maximum number of
lobs stored in the database is probably about amillion. The actual total size of lobsisalmost unlimited. We have tested
with over 100 GB of lobs without any loss of performance.

Disk Space

With file: database, the engine uses the disk for storage of data and any change. For safely, the engine backs up the
datainternally during operation. Spare space, at least equal to the size of the .dataand .script fileis needed. The .lobs
fileis not backed up during operation.

163

HyperS@L System Management and Deployment
Issues

Managing Database Connections

In al running modes (server or in-process) multiple connections to the database engine are supported. in-process
(standal one) mode supports connections from the client in the same Java Virtual Machine, while server modes support
connections over the network from several different clients.

Connection pooling software can be used to connect to the database but it is not generally necessary. Connection pools
may be used for the following reasons.

e To allow new queries to be performed while a time-consuming query is being performed in the background. In
HyperSQL, blocking depends on the transaction control model, the isolation level, and the current activity by other
sessions.

* Tolimit the maximum number of simultaneous connectionsto the database for performancereasons. With HSQLDB
this can be useful if your application is designed in a way that opens and closes connections for each small task.
Also, the overall performance may be higher when fewer simultaneous connections are used. If you want to reduce
the number of simultaneous sessions, you can use a connection pool with fewer pooled connections.

An application that is not both multi-threaded and transactional, such as an application for recording user login and
logout actions, does not need more than one connection. The connection can stay open indefinitely and reopened only
when it is dropped due to network problems.

When using an in-process database, when the last connection to the database is closed, the database still remains open.
An explicit SHUTDOWN command, with or without an argument, is required to close the database. A connection
property on the connection URL or in aproperties object can be used to shutdown the database when the last connection
is closed.

When using a server database (and to some extent, an in-process database), care must be taken to avoid creating
and dropping JDBC Connections too frequently. Failure to observe this will result in poor performance when the
application is under heavy load.

A common error made by usersin load-test simulations is to use a single client machine to open and close thousands
of connections to a HyperSQL server instance. The connection attempts will fail after a few thousand because of OS
restrictions on opening sockets and the delay that is built into the OSin closing them.

Tweaking the Mode of Operation

Different modes of operation and settings are used for different purposes. Some scenarios are discussed below:

Application Development and Testing

For application unit testing you can use an all-in-memory, in-process database.

If the tests are all run in one process, then the contents of a mem: database survives between tests. To release the
contents you can use the SHUTDOWN command (an SQL command). Y ou can even use multiple mem: databasesin
your tests and SHUTDOWN each one separately.

If the tests are in different processes and you want to keep the data between the tests, the best solution is to use a
Server instance that has a mem: database. After the tests are done, you can SHUTDOWN this database, which will
shutdown the server.

The Server has an option that allows databases to be created as needed by making a connection (see the Listeners
Chapter). This option is useful for testing, as your server is never shut down. Each time you connect to the mem:
database that is served by the Server, the database is created if it does not exist (i.e. has been previously shut down).

164

HyperS@L System Management and Deployment
Issues

If you do not want to run a Server instance, and you need persistence between tests in different processes, then you
should use afile: database. Y ou can usethe shut down=t r ue connection property to ensure the database is persisted
fully after the connections are closed. An alternative optionisto use hsql db. wri t e_del ay=f al se connection
property, but thisis slightly slower than the other option.

It has been reported that some data access frameworks do not close all their connection to the database after the tests.
In such situations, you need to use zero WRITE DELAY if you want the datato persist at the end of the tests

Y ou may actually want to use afile: database, or aserver instance that serves afile: database in preference to amem:
database. As HyperSQL logs the DDL and DML statements in the .log file, this file can be used to check what is
being sent to the database. Note that UPDATE statements are represented by a DELETE followed by an INSERT
statement. Statements are written out when the connection commits. The write delay a so has an effect on how soon
the statements are written out.

Some types of tests start with a database that already contains the tables and data, and perform various operations
on it during the tests. Y ou can create and populate the initial database then set the property "files read only=true" in
the .properties file of the database. The tests can then modify the database, but these modifications are not persisted
after the tests have completed.

Embedded Databases in Desktop Applications

Inthisusage, the amount of datachangeisoften limited and thereis often arequirement to persist the dataimmediately.
You can use the property wr i t e_del ay=f al se to force adisk sync after each commit. Before the application is
closed, you should perform the SHUTDOWN command to ensure the database is opened instantly when it is next
opened.

Embedded Databases in Server Applications

Thisusageinvolvesaserver application, such asaweb application, connecting to an embedded HyperSQL instance. In
this usage, the database is often accessed heavily, therefore performance and latency isaconsideration. If the database
is updated heavily, the default value of the WRITE DELAY property (1 sec) is often enough, as it is assumed the
server or the application does not go down frequently. If it is necessary, you can reducethe WRITE DELAY toasmall
value (20 ms) without impacting the update speed. If you reduce WRITE DELAY to zero, performance drops to the
speed of disk file sync operation.

Alternatively, a server application can use an all-in-mem database instance for fast access, while sending the data
changes to a persistent, disk based instance either periodically or in real time.

Embedding a Database Listener

Since you won't be able to access in-process database instances from other processes, you will often want to run a
Listener in your server applications with embedded databases. Y ou can do this by starting up a Server or WebServer
instance programmatically, but you could also use the classor g. hsql db. uti | . Mai nl nvoker to start up your
application and a Server or WebServer without any programming.

Example 11.1. Mainlnvoker Example

‘ java -cp path/to/your/app.jar:path/to/hsqgldb.jar your.App "" org. hsql db. server. Server ‘

(Use; instead of : to delimit classpath elements on Windows). Specify the same in-process JDBC URL to your app
andintheserver. properti es file. You can then connect to the database from outside using a JDBC URL like
j dbc: hsql db: hsql : // host nane.

This tactic can be used to run off-the-shelf server applications with an embedded HyperSQL Server, without doing
any coding.

165

HyperS@L System Management and Deployment
Issues

Mai nl nvoker can be used to run any number of Java class main method invocationsin asingle VM. See the API
specfor Mai nl nvoker for details on its usage.

Using HyperSQL Without Logging

All file database that are not readonly, write changes to the .log file. There are scenarios where writing to the .log
file can be turned off to improve performance, especialy with larger databases. For these applications you can set
the property hsql db. | og_dat a=f al se to disable the recovery log and speed up data change performance. The
equivalent SQL command is SET FILESLOG FALSE.

With this setting, no data is logged, but all the changes to cached tables are written to the .data file. To persist all
the data changes up to date, you can use the CHECKPOINT command. If you perform SHUTDOWN, the data is
also persisted correctly. If you do not use CHECKPOINT or SHUTDOWN. All the changes are lost and the database
revertsto itsoriginal state when it is opened.

Your server applications can use a database as a temporary disk data cache which is not persisted past the lifetime of
the application. For this usage, delete the database files when the application ends.

On some platforms, such as embedded devices which arereliable, thisis also a useful option. Y our application issues
CHECKPOINT to save the changes made so far. This method of use reduces write operations on SSD devices. For
this usage, the lock file should also be disabled with the connection property hsgldb.lock_file=false.

Server Databases

Running databases in a HyperSQL server is the best overall method of access. Asthe VM process is separate from
the application, this method is the most reliable as well as the most accessible method of running databases.

Upgrading Databases

Any database that is not produced with the release version of HyperSQL 2.0 must be upgraded to this version. Most
catalogs created with 1.8.x can be upgraded simply by opening with HyperSQL 2. When this is not possible due to
errors, the rest of the procedures bel ow should be followed.

Once a database is upgraded to 2.0, it can no longer be used with previous versions of HyperSQL.

If your database has been created with version 1.7.x, first upgrade to version 1.8.1 and perform aSHUTDOWN COM-
PACT with this version. Y ou can then open and upgrade the database with version 2.0.

Upgrading From Older Versions

To upgrade from version 1.8.x with the default TEXT format script files, simply open the database with 2.0. If the
version 1.8.x files have database script format set to BINARY or COMPRESSED (ZIPPED) you must issue the SET
SCRIPTFORMAT TEXT and SHUTDOWN SCRIPT commands with the old version, then open with the new version
of the engine. In most cases the upgrade is successful and complete.

It isstrongly recommended to execute SHUTDOWN COMPACT after an automatic upgrade from previous versions.

If your database has been created with version 1.7.2 or 1.7.3, first upgrade to version 1.8.1 and perform aSHUTDOWN
COMPACT with this version. Y ou can then upgrade the database to version 2.0.

To upgradefrom older version database files (1.7.1 and older) that contain CACHED tables, usethe SCRIPT procedure
below. In all versions of HyperSQL, the SCRI PT ' fi | ename' command (used as an SQL statement) allows you
to save afull record of your database, including database object definitions and data, to afile of your choice. You can
export a script file using the old version of the database engine and open the script as a database with 2.0.

166

HyperS@L System Management and Deployment
Issues

Procedure 11.1. Upgrade Using the SCRIPT Procedurefor Very Old Versions
1. Opentheorigina databasein the old version of DatabaseM anager

2. Issuethe SCRIPT command, for example SCRI PT ' newer si on. scri pt' tocreateascript file containing
acopy of the database.

3. SHUTDOWN this database.

4, Copy the origina *. properties file into newersion. properties in the same directory as
newer si on. scri pt

5. Try to open the new database newver si on using DatabaseManager of version 1.8.1.

6. If thereisany inconsistency in the data, the script line number is reported on the consol e and the opening process
is aborted. Edit and correct any problemsin the newver si on. scri pt before attempting to open again. Use
the guidelines in the next section (Manual Changesto the . scri pt File). Use a programming editor that is
capable of handling very large files and does not wrap long lines of text.

Manual Changes to the *.script File

In HyperSQL 2.0 the full range of ALTER TABLE commands is available to change the data structures and their
names. However, if an old database cannot be opened due to data inconsistencies, or it uses index or column names
that are not compatible with 2.0, manual editing of the*. scri pt file can be performed.

» Version 2.0 does not accept duplicate names for indexes that were allowed before 1.7.2.
» Version 2.0 does not accept some table or column names that are SQL reserved keywords without double quoting.
» Version 2.0 ismore strict with check conditions and default values.

Other manual changes are also possible. Notethat the* . scri pt file must be the result of a SHUTDOWN SCRIPT
and must contain the full data for the database. The following changes can be applied so long as they do not affect
the integrity of existing data.

» Names of tables, columns and indexes can be changed. These changes must be consistent regarding foreign key
constraints.

» CHECK
A check constraint can always be removed.
* NOT NULL
A not-null constraint can always be removed.
* PRI MARY KEY
A primary key constraint can be removed. It cannot be removed if there isaforeign key referencing the column(s).
« UNI QUE
A UNIQUE constraint can be removed if there is no foreign key referencing the column(s).
* FORElI GN KEY

A FOREIGN KEY constraint can always be removed.

167

HyperS@L System Management and Deployment

Issues

COLUWN TYPES

Some changes to column types are possible. For example an INTEGER column can be changed to BIGINT.

After completing the changes and saving the modified . scri pt file, you can open the database as hormal.

Backward Compatibility Issues

HyperSQL 2.0 conforms to the SQL Standard better than previous versions and supports more features. For these
reasons, there may be some compatibility issues when converting old database, or using applications that were written
for version 1.8.x or earlier. Some of the potential issues are listed here.

User names and passwords are case-sensitive. Check the .script file of a database for the correct case of user name
and password and use this form in the connection properties or on connection URL.

Check constraints must conform to the SQL Standard. A check constraint is rejected if it is not deterministic or
retrospectively deterministic. When opening an old database, HyperSQL silently drops check constraints that no
longer compile. See under check constraints for more detail about what is not allowed.

Type declarations in column definition and in cast expressions must have the necessary size parameters.

In connection with the above, an old database that did not have the enf orce_stri ct _si ze property, is now
converted to version 2.0 with the engine supplying the missing size parameters. For example, aVARCHAR column
declaration that hasno size, isgiven a32K size. Check these sizes are adequate for your use, and change the column
definition as necessary.

Column names in a GROUP BY clause were previously resolved to the column label. They are now resolved to
column name first, and if the name does not match, to the column label.

If two or more tablesin ajoin contain columns with the same name, the columns cannot be referenced in join and
where conditions. Use table names before column names to qualify the references to such columns.

Table definitions containing GENERATED BY DEFAULT ASIDENTITY but with no PRIMARY KEY do not
automatically create a primary key. Database .script files made with 1.8 are fine, asthe PRIMARY KEY clauseis
awaysincluded. But your application program may assume an automatic primary key is created.

CREATE ALIAS is now obsolete. Use the new function definition syntax. The or g. hsql db. Li brary class
no longer exists. Y ou should use the SQL form of the old library functions. For example, use LOG x) rather than
thedirect form, " or g. hsql db. Li brary. | 0og" (x) .

The names of some commands for changing database and session properties have changed. Seethelist of statements
in this chapter.

Backing Up Database Catalogs

Thedatabase engine savesthefiles containing all the datain afile catal og when ashutdown takesplace. It automatically
recovers from an abnormal termination and preserves the data when the catalog is opened next time. In an ideal
operating environment, where there is no OS crash, disk failure, bugs in code, etc. there would be no need regularly
to backup a database. Thisis meant to say, the engine performs the routine shutdown procedure internally, therefore
backing up catalogsisaninsurance policy against all sortsof misadventurethat are not under the control of the database
engine.

The data for each catalog consists of up to 5 files in the same directory with the endings such as* . pr operti es,

*

. Scri pt, etc., asdetailed in previous chapters.

168

HyperS@L System Management and Deployment
Issues

HyperSQL 2.0 includes commands to backup the database filesinto asingle. tar or . t ar. gz file archive. The
backup can be performed by a command given in a JDBC session if the target database catalog is running, or on the
command-line if the target catal og has been shutdown.

Making Online Backups

To back up arunning catalog, obtain a JDBC connection and issue a BACKUP DATABASE command in SQL. In its
most simpleform, the command format below will backup the databaseasasingle. t ar . gz filetothegivendirectory.

\ BACKUP DATABASE TO <directory nanme> BLOCKI NG \

See the next section under Statements for details about the command and its options. See the sections below about
restoring a backup.

Making Offline Backups

To back up an offline catalog, the catalog must be in shut down state. Y ou will run a Java command like this

Example 11.2. Offline Backup Example

java -cp path/to/ hsqgldb.jar org.hsqgldb.lib.tar.DbBackup --save \
tar/path.tar db/base/path

wheret ar/ pat h. tar isafilepathtothe*.tar or *. tar. gz fileto be created, and db/ base/ pat h isthe
file path to the catalog file base name (in same fashion asin ser ver . dat abase. * settings and JDBC URLs with
catalog typefile:.

Examining Backups

You can list the contents of backup tar files with DbBackup on your operating system command line, or with any
Pax-compliant tar or pax client (thisincludes GNU tar),

Example 11.3. Listing a Backup with DbBackup

‘ java -cp path/to/ hsqldb.jar org.hsqgldb.lib.tar.DbBackup --list tar/path.tar ‘

You can aso give regular expressions at the end of the command line if you are only interested in some of the file
entries in the backup. Note that these are real regular expressions, not shell globbing patterns, so you would use .
+scri pt tomatch entriesending in "script”, not *scri pt .

Y ou can examine the contents of the backup in their entirety by restoring the backup, as explained in the following
section, to atemporary directory.

Restoring a Backup

You use DbBackup on your operating system command line to restore a catalog from a backup.

Example 11.4. Restoring a Backup with DbBackup

java -cp path/to/ hsql db.jar org. hsqgldb.lib.tar.DbBackup --extract \
tar/path.tar db/dir

wheret ar/ pat h. t ar isafile path to the *.tar or *.tar.gz file to be read, and db/ di r isthe target directory to
extract the catalog files into. Note that db/ di r specifies a directory path, without the catalog file base name. The
fileswill be created with the names stored in the tar file (and which you can see as described in the preceding section).

169

HyperS@L System Management and Deployment
Issues

Encrypted Databases

HyperSQL supports encrypted databases. Encryption services use the Java Cryptography Extensions (JCE) and uses
the ciphersinstalled with the JRE. HyperSQL itself does not contain any cryptography code.

Three elements are involved in specifying the encryption method and key. A cipher, together with its configuration is
identified by a string which includes the name of the cipher and optional parameters. A provider isthe fully qualified
class name of the cipher provider. A key is represented as a hexadecimal string.

Creating and Accessing an Encrypted Database

First, a key must be created for the desired cipher and configuration. This is done by calling the function
CRYPT_KEY (<cipher spec>, <provider>). If the default provider (the built-in VM ciphers) is used, then NULL
should be specified as the provider. The CRYPT_KEY function returns a hexadecimal key. The function call can be
made in any HyperSQL database, so long as the provider class is on the classpath. This key can be used to create a
new encrypted database. Calls to this function always return different keys, based on a generated random values.

Asan example, acal to CRYPT_KEY (‘Blowfish', null) returned the string, '604a6105889da65326bf35790a923932'.
To create a new database, the URL below is used:

j dbc: hsql db: fil e: <dat abase
pat h>; crypt _key=604a6105889da65326bf 35790a923932; crypt _t ype=bl owfi sh

The third property nameis crypt_provider. Thisis specified only when the provider is not the default provider.
HyperSQL works with any symmetric cipher that may be available from the VM.

Thefilesthat are encrypted include the .script, .data, .backup and .log files. The .lobsfile is not encrypted by default.
The property crypt_lobs=true must be specified to encrypt the .lobsfile.

Speed Considerations

General operations on an encrypted database are performed the same as with any database. However, some operations
are significantly slower than with the equivalent cleartext database. With MEMORY tables, there is no difference
to the speed of SELECT statements, but data change statements are slower. With CACHED tables, the speed of all
statementsis slower.

Security Considerations

Security considerations for encrypted databases have been discussed at length in HSQL DB discussion groups. Devel-
opment team members have commented that encryption is not a panacea for al security needs. The following issues
should be taken into account:

» Encrypted files are relatively safe in transport, but because databases contain many repeated values and words,
especially known tokens such as CREATE, INSERT, etc., breaking the encryption of a database may be simpler
than an unknown file.

* Only the files are encrypted, not the memory image. Poking into computer memory, while the database is open,
will expose the contents of the database.

» HyperSQL is open source. Someone who has the key, can compile and use a modified version of the program that
saves afull cleartext dump of an encrypted database

Therefore encryption is generally effective only when the users who have access to the crypt key are trusted.

170

HyperS@L System Management and Deployment
Issues

Monitoring Database Operations

Database operations can be monitored at different levels using internal HyperSQL capabilities or add-ons.

Statement Level Monitoring

Statement level monitoring allows you to gather statistics about executed statements. HyperSQL is supported by the
monitoring tool JAMon (Java Application Monitor). JAMon is currently developed as the SourcefForge project, ja-
monapi.

JAMon works at the IDBC level. It can monitor and gather statistics on different types of executed statements or other
JDBC calls.

Early versions of JAMon were developed with HSQLDB and had to be integrated into HSQLDB at code level. The
latest versions can be added on as a proxy in a much simpler fashion.

Internal Event Monitoring

HyperSQL can log important internal events of the engine. These events occur during the operation of the engine, and
are not always coupled with the exact type of statement being executed. Normal events such as opening and closing
of files, or errors such as OutOfMemory conditions are examples of logged events.

HyperSQL supports two methods of logging. One method is specific to the individual database and is managed inter-
nally by HyperSQL. The other method is specific to VM and is managed by alogging framework.

The internally-generated, individual log for the database can be enabled with the SET DATABASE EVENT LOG
LEVEL statement, described in the next section. This method of logging is very useful for desktop application deploy-
ment, as it provides an ongoing record of database operations.

HyperSQL also supportslogdJand JDK logging. The same event information that is passed to theinternal 1og, is passed

to external logging frameworks. These frameworks are configured outside HyperSQL . The log messages include the
unique id of the database that generated the message, so it can be identified in a multi-database server context.

Server Operation Monitoring

A Server or WebServer instance can be started with the property server.silent=false. This causes all the connections
and their executed statements to be printed to stdout as the statements are submitted to the server.

Statements

System level statements are listed in this section. Statements that begin with SET DATABASE or SET FILES arefor
properties that have an effect on the normal operation of HyperSQL. The effects of these statements are al so discussed
in different chapters.

SHUTDOWN
shutdown statement
<shut down statenent> ::= SHUTDOMN [| MVEDI ATELY | COWPACT | SCRI PT]

Shutdown the database. If the optional qualifier is not used, a normal SHUTDOWN is performed. A normal SHUT-
DOWN ensures all datais saved correctly and the database opens without delay on next use.

171

HyperS@L System Management and Deployment

Issues
SHUTDOWN IMMEDI- Saves the *.log file and closes the database files. This is the quickest form of shut-
ATELY down. Thiscommand should not be used asthe routine method of closing the database,

because when the database is accessed next time, it may take along time to start.

SHUTDOWN COMPACT Thisis similar to normal SHUTDOWN, but reduces the *.data file to its minimum
size. It takes longer than normal SHUTDOWN.

SHUTDOWN SCRIPT Thisissimilar to SHUTDOWN COMPACT, but it does not rewritethe* . dat a and
text table files. After SHUTDOWN SCRIPT, only the* . scri pt and*. pr oper -
ti es files remain. At the next startup, these files are processed and the *. dat a
and *. backup files are created. This command in effect performs part of the job
of SHUTDOWN COMPACT, leaving the other part to be performed automatically
at the next startup.

This command produces a full script of the database which can be edited for special
purposes prior to the next startup.

Only auser with the DBA role can execute this statement.
BACKUP DATABASE
backup database statement

<backup dat abase statenent> ::= BACKUP DATABASE TO <file path> {SCRI PT | [NOT]
COVPRESSED} BLOCKI NG

Backup the database to specified <f i | e pat h> for archiving purposes.

The<fil e pat h>canbeintwoforms. If the<fi | e pat h>endswith aforward slash, it specifiesadirectory. In
this case, an automatic name for the archive is generated that includes the date, time and the base name of the database.
The database is backed up to this archive file in the specified directory. If the <fi | e pat h> does not end with a
forward slash, it specifies a user-defined file name for the backup archive. The archiveisintar, gzip format depending
on whether it is compressed or not.

The SCRIPT optionisnot currently supported. If SCRIPT isspecified, the backup will consist of twofiles, a* . pr op-
ertiesfileanda*. scri pt file, which contain al the data and settings of the database. These files are not com-
pressed.

If COMPRESSED or NOT COMPRESSED is specified, the backup consists of the current snapshot of database files.
During backup, a CHECKPOINT command is silently executed.

The qualifier, BLOCKING, means all database operations are suspended during backup.

The HyperSQL jar also contains a program that creates an archive of an offline database. It also contains a program
to expand an archive into database files. These programs are documented in this chapter under Backing up Database
Catalogs.

Only auser with the DBA role can execute this statement.
CHECKPOINT

checkpoint statement

<checkpoi nt statenent> ::= CHECKPO NT [DEFRAQG

Closes the database files, rewrites the script file, deletes the log file and opens the database. If DEFRAG s specified,
also shrinksthe * . dat a fileto its minumum size. Only a user with the DBA role can execute this statement.

172

HyperS@L System Management and Deployment
Issues

Only auser with the DBA role can execute this statement.

CRYPT_KEY

crypt_key function

<crypt _key function> ::= CRYPT_KEY (<cipher spec>, <provider>)

The statement, CALL CRYPT_KEY(<ci pher spec>, <provider>) returnsabinary string representing a
valid key for thegiver cipher and provider. The<pr ovi der > argument isspecified asNULL for the default provider.

SCRIPT
script statement
<script statement> ::= SCRIPT [<file name>]

Returnsascript containing SQL statementsthat definethe database, itsusers, and itsschemaobjects. If <f i | e nane>
is not specified, the statements are returned in a ResultSet, with each row containing an SQL statement. No data
statements are included in this form. The optional file nameis asingle-quoted string. If <f i | e nane> is specified,
then the script iswritten to the named file. In this case, all the datain all tables of the database isincluded in the script
as INSERT statements.

Only auser with the DBA role can execute this statement.

SET DATABASE COLLATION

set database collation statement

<set database collation statenment> ::= SET DATABASE COLLATI ON <col | ati on nane>

Each database can have its own collation. Sets the collation from the set of collations supported by HyperSQL. Once
this command has been issued, the database can be opened in any JVM and will retain its collation. Only a user with
the DBA role can execute this statement.

Only auser with the DBA role can execute this statement.
SET DATABASE DEFAULT TABLE TYPE
set database default table type statement

<set database default table type> ::= SET DATABASE DEFAULT TABLE TYPE { CACHED
| MEMORY }

Sets the type of table created when the next CREATE TABLE statement is executed. The default is MEMORY .
Only auser with the DBA role can execute this statement.

SET DATABASE DEFAULT RESULT MEMORY ROWS

set database default result memory rows statement

<set database default result nenmory rows> ::= SET DATABASE DEFAULT RESULT MEMORY
ROAS <unsigned integer literal >

Sets the maximum number of rows of each result set and other internal temporary table that is held in memory. This
setting appliesto all sessions. Individual sessions can change the value with the SET SESSI ON RESULT MEMORY
ROWS command. The default is 0, meaning all result sets are held in memory.

173

HyperS@L System Management and Deployment

| ssues
Only auser with the DBA role can execute this statement.
SET DATABASE EVENT LOG LEVEL
set database event log level statement*
<set dat abase event log level> ::= SET DATABASE EVENT LOG LEVEL { 0| 1| 2}

Sets the amount of information logged in the internal, database-specific event log. Level 0 means no log. Level 1
means only important (error) events. Level 2 means more events, including both important and lessimportant (normal)
events. For readonly and mem: databases, if the level is set above 0, the log messages are directed to stderr.

Only auser with the DBA role can execute this statement.

SET DATABASE GC

set database gc statement

<set database gc statenent> ::= SET DATABASE CC <unsi gned integer literal >

An optional property which forces callsto Syst em gc() after the specified number of row operations. The de-
fault value for this property is 0, which means no System.gc() calls. Usual values for this property range from 10000
depending on the system and the memory allocation. This property may be useful in some in-process deployments,
especialy with older VM implementations.

Only auser with the DBA role can execute this statement.

SET DATABASE SQL SIZE

set database sl size statement

<set database sql size statement> ::= SET DATABASE SQ. Sl ZE { TRUE | FALSE }

Enable or disable enforcement of column sizes for CHAR and VARCHAR columns. The default is TRUE, meaning
table definition must contain VARCHAR(n) instead of VARCHAR.

Only auser with the DBA role can execute this statement.

SET DATABASE SQL NAMES

set database sgl names statement

<set database sql names statenent> ::= SET DATABASE SQL NAMES { TRUE | FALSE }

Enable or disable full enforcement of the rule that prevents SQL keywords being used for database object names such
as columns and tables. The default is FALSE, meaning disable.

Only auser with the DBA role can execute this statement.
SET DATABASE SQL REFERENCES
set database sq references statement

<set database sql references statement> ::= SET DATABASE SQL REFERENCES { TRUE
| FALSE }

This command can enable or disable full enforcement of the rule that prevents ambiguous column references in SQL
statements (usually SELECT statements). A column reference is ambiguous when it is not qualified by atable name
or table alias and can refer to more than one columnin a JOIN list.

174

HyperS@L System Management and Deployment
Issues

The property is FALSE by default. It is better to enable this check while development, to improve the quality and
correctness of SQL statements.

Only auser with the DBA role can execute this statement.
SET DATABASE REFERENTIAL INTEGRITY
set database referential integrity statement

<set database referential integrity statement> ::= SET DATABASE REFERENTI AL
INTEGRITY { TRUE | FALSE }

This command enables or disables the enforcement of referential integrity constraints (foreign key constraints), check
constraints apart from NOT NULL and triggers. By default, referential integrity constraints are checked.

The only legitimate use of this statement is before importing large amounts of external data into tables that have
existing FOREIGN KEY constraints. After import, the statement must be used again to enable constraint enforcement.

If you are not sure the data conforms to the constraints, run queries to verify all rows conform to the FOREIGN KEY
constraints and take appropriate actions for the rows that do not conform.

A query exampleto return the rowsin aforeign key table that have no parent is given below:

Example 11.5. Finding foreign key rows with no parents after a bulk import

SELECT * FROM foreign_key_table LEFT OQUTER JO N primary_key_tabl e
ON foreign_key table.fk_col = primary_key_table.pk_col WHERE primary_key_tabl e. pk_col IS NULL

Only auser with the DBA role can execute this statement.

SET DATABASE UNIQUE NAME

set database unigue name

<set database uni que nanme statement> ::= SET DATABASE UNI QUE NAME <identifier>

Each HyperSQL catalog (database) has an engine-generated internal name. This nameis based on the time of creation
of the database and is exactly 16 characters. The name is used for in log events sent to external logging frameworks.
This name can be changed by an administrator. The new name must be exactly 16 characters long.

SET DATABASE TRANSACTION CONTROL
set database transaction control statement

<set dat abase transacti on control statenment> ::= SET DATABASE TRANSACTI ON CONTROL
{ LOCKS | MVLOCKS | MVCC }

Set the concurrency control system for the database. It can be issued only when all sessions have been committed or
rolled back. This command and its modes is discussed in the Sessions and Transactions chapter.

Only auser with the DBA role can execute this statement.
SET FILESBACKUP INCREMENT
set files backup increment statement

<set dat abase backup increment statenent> ::= SET FI LES BACKUP | NCREMENT { TRUE
| FALSE }

175

HyperS@L System Management and Deployment
Issues

Older versions of HSQLDB perform a backup of the .data file before its contents are modified and the whole .data
file is saved in a compressed form when a CHECKPOINT or SHUTDOWN is performed. This takes a long time
when the size of the database exceeds 100 MB or so (on an average 2010 computer, you can expect a backup speed
of 20MB / sor more).

The alternative is backup in increments, just before some part of the .data file is modified. In this mode, no backup
is performed at CHECKPIONT or SHUTDOWN. This mode is preferred for large databases which are opened and
closed frequently.

The default mode is TRUE. If the old method of backup is preferred, the mode can be set FALSE.
Only auser with the DBA role can execute this statement.

SET FILESCACHE ROWS

set files cache rows statement

<set files cache rows statenment> ::= SET FILES CACHE ROWS <unsigned integer
literal >

Sets the maximum number of rows (of CACHED tables) held in the memory cache.
Only auser with the DBA role can execute this statement.

SET FILESCACHE SIZE

set files cache size statement

<set files cache size statenent> ::= SET FILES CACHE SIZE <unsigned i nteger
literal >

Sets maximum amount of data (of CACHED tables) in kilobytes held in the memory cache.

Only auser with the DBA role can execute this statement.

SET FILESDEFRAG

set files defrag statement

<set files defrag statement> ::= SET FI LES DEFRAG <unsi gned integer literal >

Sets the threshold for performing a DEFRAG during a checkpoint. The<unsi gned i nteger |iteral >isthe
percentage of abandoned spaceinthe* . dat a file. When aCHECKPOINT is performed either asaresult of the. | og
file reaching the limit set by SET FI LES LOG SI ZE m or by the user issuing a CHECKPOINT command, the
amount of space abandoned since the database was opened is checked and if it is larger than specified percentage, a
CHECKPOINT DEFRAG is performed instead of a CHECKPOINT.

The default is 0, which indicates no DEFRAG. Useful values are between 10 to 50

Only auser with the DBA role can execute this statement.

SET FILESLOG

set files log statement

<set files log statenent> ::= SET FILES LOG { TRUE | FALSE }

Setslogging of database operations on or off. Turning logging off isfor special usage, such astemporary cache usage.

176

HyperS@L System Management and Deployment

| ssues
Only auser with the DBA role can execute this statement.
SET FILESLOG SIZE
set files log size statement
<set files log size statement> ::= SET FI LES LOG S| ZE <unsi gned integer literal >

Sets the maximum size in MB of the*. | og file to the specified value. The default maximum size is 50 MB. If the
value is zero, no limit is used for the size of the file. When the size of the file reaches this value, a CHECKPOINT
is performed and thethe* . | og fileis cleared to size 0.

Only auser with the DBA role can execute this statement.
SET FILESBACKUP INCREMENT
set files backup increment statement

<set files increment backup statement> ::= SET FILES | NCREMENT BACKUP { TRUE
| FALSE }

This specifies the method for internal backup operation. The default istrue.

During updates, the contents of the .datafileis modified. When this property istrue, the modified contents are backed
up gradually. This causesamargina slowdown in operations, but allowsfast checkpoint and shutdown with large .data
files.

When the property is false, the .datafile is backed up entirely at the time of checkpoint and shutdown. Up to version
1.8.0, HSQL DB supported only full backup. Version 1.8.1 supports incremental backup.

Only a user with the DBA role can execute this statement.

SET FILESNIO

set filesnio

<set files nio statement> ::= SET FILES NNO { TRUE | FALSE }

Changes the access method of the .data file. The default is TRUE and uses the Java nio classes to access thefile.
Only auser with the DBA role can execute this statement.

SET FILESWRITE DELAY

set files write delay statement

<set files wite delay statenent> ::= SET FILES WRI TE DELAY {{ TRUE | FALSE }
| <seconds value> | <mlliseconds val ue> MLLI S}

Set the WRITE DELAY property of the database. The WRITE DELAY controls the frequency of file sync for the
log file. When WRITE_DELAY isset to FALSE or 0, the sync takes place immediately at each COMMIT. WRITE
DELAY TRUE performs the sync once every 10 seconds (which is the default). A numeric value can be specified
instead.

The purpose of thiscommand isto control the amount of datalossin case of atotal system crash. A delay of 1 second
means at most the data written to disk during the last second before the crash islost. All data written prior to this has
been synced and should be recoverable.

177

HyperS@L System Management and Deployment
Issues

A write delay of 0impacts performance in high load situations, as the engine hasto wait for the file system to catch up.
To avoid this, you can set write delay down to 10 milliseconds.

Each time the SET FILES WRITE DELAY statement is executed with any value, a sync is immediately performed.
Only auser with the DBA role can execute this statement.

Only auser with the DBA role can execute this statement.

SET FILESSCALE

set files scale

<set files scale statenent> ::= SET FILES SCALE <scal e val ue>

Changes the scale factor for the .data file. The default scale is 8 and allows 16GB of data storage capacity. The scale
can be increased in order to increase the maximum data storage capacity. The scale values 8, 16, 32, 64 and 128 are
allowed. Scale value 128 alows a maximum capacity of 256GB.

This command can be used only when there is no datain CACHED tables.

Only auser with the DBA role can execute this statement.

SET FILESLOB SCALE

set fileslob scale

<set files lob scale statement> ::= SET FILES LOB SCALE <scal e val ue>

Changes the scale factor for the .lobs file. The scale is interpreted in kilobytes. The default scale is 32 and alows
64TB of lob data storage capacity. The scale can be reduced in order to improve storage efficiency. If thelobsarealot
smaller than 32 kilobytes, reducing the scale will reduce wasted space. The scalevalues, 2, 4, 8, 16, 32 are allowed.
For exampleif the average size of lobsis 4 kilobytes, the default scale of 32 will result in 28K B wasted space for each
lob. Reducing the lob scale to 2 will result in average 1KB wasted space for each |ob.

This command can be used only when there is no lob in the database.

Only auser with the DBA role can execute this statement.

178

HyperS@L

Chapter 12. Properties
Fred Toussi, The HSQL Development Group

$Revision: 3626 $

Copyright 2002-2009 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

Published $Date: 2010-06-05 07:49:07 -0400 (Sat, 05 Jun 2010) $

Connections

The normal method of accessing a HyperSQL catalog is via the JIDBC Connection interface. An introduction to dif-
ferent methods of providing database services and accessing them can befound in the SQL Language chapter. Details
and examples of how to connect via JDBC are provided in our JavaDoc for JDBCConnecti on .

A uniform method is used to distinguish between different types of connection. The common driver identifier is
j dbc: hsql db: followed by aprotocol identifier (mem file: res: hsqgl: http: hsgls: https:)then
followed by host and port identifiers in the case of servers, then followed by database identifier. Additional property /
value pairs can be appended to the end of the URL, separated with semicolons.

Table 12.1. Hyper SQL URL Components

Driver and Protocol Host and Port Database

j dbc: hsql db: mem not available accounts

Lowercase, single-word identifier creates the in-memory database when the first connection is made. Subsequent
use of the same Connection URL connects to the existing DB.

The old form for the URL, j dbc: hsql db: . creates or connects to the same database as the new form for the
URL,j dbc: hsqgl db: mem .

jdbc: hsql db: file: not available nydb
/ opt / db/ account s
C. / dat a/ mydb

Thefile path specifies the database file. In the above examples the first one refers to a set of mydb.* filesin the di-
rectory where the j avacommand for running the application was issued. The second and third examples refer to
absol ute paths on the host machine.

j dbc: hsql db: res: not available / adi rect ory/ dbnane

Database files can be loaded from one of the jars specified as part of the Java command the same way as resource
files are accessed in Java programs. The/ adi r ect or y above stands for a directory in one of the jars.

j dbc: hsql db: hsql : /1l ocal host /an_alias

j dbc: hsql db: hsql s: /1192.0.0.10: 9500 /enrol |l ments
j dbc: hsql db: htt p: /I dbserver. sonmedonmi n. com|/ qui ckdb

j dbc: hsql db: htt ps:

The host and port specify the IP address or host name of the server and an optional port number. The database to
connect to is specified by an alias. Thisaliasis alowercase string defined inthe ser ver . properti es fileto

179

HyperS@L Properties

Driver and Protocol Host and Port Database

refer to an actual database on the file system of the server or atransient, in-memory database on the server. The fol-
lowing examplelinesinser ver . properti es orwebserver. properti es definethe database aliaseslist-
ed above and accessible to clients to refer to different file and in-memory databases.

The old form for the server URL, e.g., j dbc: hsql db: hsql / /| ocal host connectsto the same database as
the new form for the URL, j dbc: hsql db: hsql / /| ocal host/ wheretheaiasisazero length string.

Connection properties

Each JDBC Connection to a database can specify connection properties. The properties user and password are always
required. In 2.0 the following optional properties can also be used.

Connection properties are specified either by establishing the connection via the method call below, or the property
can be appended to the full Connection URL.

‘ Dri ver Manager . get Connection (String url, Properties info)

Table 12.2. Connection Properties

get_column_name |t rue |co| umn name in ResultSet

This property is used for compatibility with other JDBC driver implementations. When true (the default),
Resul t Set . get Col umNanme(i nt ¢) returnsthe underlying column name. This property can be specified
differently for different connections to the same database.

The default is true. When the property is false, the above method returns the same value as
Resul t Set . get Col utmLabel (i nt col umm) Example below:

‘ jdbc: hsqgl db: hsql : //1 ocal host/ enrol | ment s; get _col um_nane=f al se

When a ResultSet is used inside a user-defined stored procedure, the default, true, is always used for this property.

ifexists fal se [connectonly if database already exists

Has an effect only with mem: and file: database. When true, will not create a new database if one does not already
exist for the URL.

When the property is false (the default), a new mem: or file: database will be created if it does not exist.

Setting the property to true is useful when troubleshooting as no database is created if the URL is malformed. Ex-
ample below:

‘ jdbc: hsqgldb: file:enroll nents;ifexists=true

shutdown f al se [shut down the database when the last connection is
closed

If this property ist r ue, when the last connection to a database is closed, the database is automatically shut down.
The property takes effect only when the first connection is made to the database. This means the connection that
opens the database. It has no effect if used with subsequent connections.

180

HyperS@L Properties

This command has two uses. One isfor test suites, where connections to the database are made from one VM con-
text, immediately followed by another context. The other use is for applications where it is not easy to configure
the environment to shutdown the database. Examples reported by usersinclude web application servers, where the
closing of the last connection coincides with the web app being shut down.

‘ jdbc: hsqgl db: file:enroll nents; shut down=true ‘

In addition, when a connection to an in-process database creates anew database, or opensan existing database (i.e. itis
thefirst connection madeto the database by the application), all the user-defined database properties can be specified as
URL properties. Thiscan be used to specify propertiesto enforce more strict SQL adherence, or to change cache scale
or similar properties before the database files are created. However, for new databases, it is recommended to use the
SET PROPERTY command for such settings.

Database Properties in Connection URL and Proper-
ties

The database engine has several propertiesthat arelisted in the System Management and Deployment Issues chapter.
These properties can be changed via SQL commands after aconnection is made to the database. It is possibleto specify
all of these properties in the connection properties on as part of the URL string when the first connection is made to a
new file: or mem: database. This allows the propertiesto be set without using any SQL commands. The corresponding
SQL command is given for each property.

Management of properties has changed since version 1.8. The old SET PROPERTY does not change a property and
isretained to simplify application upgrades.

In the example URL below, two properties are set for the first connection to a new database. If the properties are used
for connection to an existing database, they are ignored.

‘ jdbc: hsqgl db: file:enroll nents; hsqgl db. cache_r ows=10000; hsql db. ni o_data_fil e=fal se ‘

In the table below, database properties that can be used as part of the URL below are given. For each property that
can aso be set with an SQL statement, the statement is also given. These statements are described in the System
Management and Deployment Issues chapter.

Table 12.3. Database-specific Property File Properties

Value Default |Description

check_props fal se |[checksthe validity of the connection properties

If the property istrue, every database property that is specified on the URL or in connection properties is checked
and if it isnot used correctly, an error is returned

‘thi S property cannot be set with an SQ statenent

crypt_lobs fal se |encryption of lobs

If the property istrue, the contents of the .lobsfile is encrypted as well.

‘thi s property cannot be set with an SQ statenent

crypt_key none encryption

The cipher key for an encrypted database

181

HyperS@L Properties

Value |Defau|t |Description

‘thi s property cannot be set with an SQ statenent

crypt_provider none encryption

The fully-qualified class name of the cryptography provider. This property is not used for the default security
provider.

‘thi S property cannot be set with an SQ statenent ‘

crypt_type none |encryption

The cipher specification.

‘thi s property cannot be set with an SQ statenent

read_only fal se |[readonly database

This property is a specia property that can be added manually to the .propertiesfile, or included in the URL or
connection properties. When this property istrue, the database becomes readonly.

‘thi s property cannot be set with an SQ statenent ‘

files read_only fal se |readonly files database

This property is used similarly to the hsgldb.read_only property. When this property is true, CACHED and TEXT
tables are readonly but memory files are not. Any change to the data is not persisted to database files.

‘thi s property cannot be set with an SQ statenent ‘

hsgldb.log_data true recovery log

This property can be set to false when database recovery in the event of an unexpected crash is not necessary. A
database that is used as atemporary cache is an example. Regardless of the value of this property, if there is a prop-
er shutdown of the database, all the change data is stored.

‘thi S property cannot be set with an SQ statenent ‘

sgl.enforce_names fal se [|enforcing SQL keywords

This property, when set true, prevents SQL keywords being used for database object names such as columns and
tables.

|SET DATABASE SQL NAMES { TRUE | FALSE } |

sgl.enforce size true trimming and padding string columns.

This property isthe same as sgl.enforce_strict_size

sgl.enforce _strict_size true size enforcement and padding string columns

Conformsto SQL standards for size and precision of datatypes. When true, all CHARACTER, VARCHAR, NU-
MERIC and DECIMAL vauesthat arein arow affected by an INSERT INTO or UPDATE statement are checked

182

HyperS@L Properties

Value |Defau|t |Description

against the size specified in the SQL table definition. An exception is thrown if the value istoo long. Also all
CHARACTER values that are shorter than the specified size are padded with spaces.

'SET DATABASE SQU SI ZE { TRUE | FALSE }

sgl.enforce refs fal se [enforcing column reference disambiguation

This property, when set true, causes an error when an SQL statements contains column references that can be
resovlied by more than one table name or alias. In effect forces such column references to have a table name or ta-
ble alias qudlifier.

'SET DATABASE SQU REFERENCES { TRUE | FALSE }

runtime.gc_interval 0 forced garbage collection

This setting forces garbage collection each time a set number of result set row or cache row objects are created. The
default, "0" means no garbage collection is forced by the program.

\SET DATABASE GC <nuneric val ue>

hsgldb.default_table type menor y |type of table created with unqualified CREATE TABLE

The CREATE TABLE command resultsinaMEMORY table by default. Setting the value cached for this proper-
ty will result in a cached table by default. The qualified forms such as CREATE MEMORY TABLE or CREATE
CACHED TABLE are not affected at all by this property.

‘SET DATABASE DEFAULT TABLE TYPE { CACHED | MEMCORY }

hsgldb.applog 0 application logging level

The default level 0 indicates no logging. Level 1 resultsin events related to persistence to be logged, including
any failures. Level 2 indicates al events, including ordinary events. The events are logged in afile ending with

".app.log".

|SET DATABASE EVENT LOG LEVEL { 0 | 1| 2}

hsgldb.result_max_memory_rows 0 amount of result rowsthat are kept in memory

Sets the maximum number of rows of each result set and other internal temporary table that is held in memory.

‘SET DATABASE DEFAULT RESULT MEMORY ROWS <unsigned integer literal>

hsgldb.tx | ocks |database transaction control mode

Indicates the transaction control mode for the database. The values, locks, mvlocks and mvcc are alowed.

‘SET DATABASE TRANSACTI ON CONTROL { LOCKS | MVLOCKS | MVCC }

183

HyperS@L Properties

Value Default |Description

hsgldb.cache_rows 50000 |maximum number of rowsin memory cache

I ndicates the maximum number of rows of cached tables that are held in memory.

The value can range between 100-1,000,000. If the valueis set via SET FILES then it becomes effective after the
next database SHUTDOWN or CHECKPOINT.

The property is changed viathe SET FI LES CACHE ROAS nnn SQL command.

‘SET FI LES CACHE ROAS <nuneric val ue>

hsgldb.cache _size 10000 |memory cachesize

Indicates the total size (in kilobytes) of rowsin the memory cache used with cached tables. Thissize is calculated
asthe binary size of the rows, for example an INTEGER is 4 bytes. The actual memory size used by the objectsis
2 to 4 times this value. This depends on the types of objectsin database rows, for example with binary objects the
factor islessthan 2, with character strings, the factor isjust over 2 and with date and timestamp objects the factor is
over 3.

The value can range between 100-1,000,000. The default is 10,000, representing 10,000 kilobytes. If the valueis
set via SET FILES then it becomes effective after the next database SHUTDOWN or CHECKPOINT.

‘SET FI LES CACHE SI ZE <nuneric val ue>

hsgldb.inc_backup true incremental backup of datafile

During updates, the contents of the .data file are modified. When this property is true, the modified contents are
backed up gradually. This causes amarginal slowdown in operations, but allows fast checkpoint and shutdown.

When the property isfalse, the .datafile is backed up entirely at the time of checkpoint and shutdown. Up to ver-
sion 1.8, HSQL DB supported only full backup.

'SET FILES | NCREMENT BACKUP { TRUE | FALSE }

hsgldb.lock file true use of lock file

By default, alock fileis created for each file database that is opened for read and write. This property can be speci-
fied with the value false to prevent the lock file from being created. This usage is not recommended but may be de-
sirable when flash type storage is used.

‘thi s property cannot be set with an SQ statenent

hsgldb.log_data true logging data change

When f al se is specified, no datalogging takes place. A checkpoint or shutdown still rewritesthe. scri pt file
and savesthe . backup file according to the other settings.

SET FILES LOG { TRUE | FALSE }

184

HyperS@L Properties

Value |Defau|t |Description

hsgldb.log _size 50 size of log when checkpoint is performed

The value is the size (in megabytes) that the . | og file can reach before an automatic checkpoint occurs. A check-
point rewritesthe. scri pt fileand clearsthe. | og file.

\SET FI LES LOG SI ZE <nuneric val ue>

hsgldb.nio_data file true use of nio access methods for the .datafile

When HyperSQL is compiled and run in Java 1.4 or higher, setting this property to f al se will avoid the use of
nio access methods, resulting in somewhat reduced speed. If the datafileis larger than 256MB when it is first
opened, nio access methods are not used. Also, if the file gets larger than the amount of available computer memo-
ry that needs to be allocated for nio access, non-nio access methods are used.

If used before defining any CACHED table, it applies immediately, otherwise it comes into effect after a SHUT-
DOWN and restart or CHECKPOINT.

'SET FILES NIO { TRUE | FALSE }

hsgldb.trandate dti_types true usage of type codes for advanced type datetime types

If the property istrue, the datetime WITH TIME ZONE types and INTERVAL types are represented as JDBC
datetime types without time zone and the VARCHAR type respectively.

‘thi s property cannot be set with an SQ statenent

hsgldb.write_delay true write delay for writing log file entries

If the property istrue, the default WRITE DELAY property of the database is used, which is 1000 milliseconds. If
the property isfalse, the WRITE DELAY is set to 0 seconds. The SQL command for this property allows more pre-
cise control over the property.

‘SET FI LES WRI TE DELAY {{ TRUE | FALSE } | <seconds value> | <nilliseconds value> MLLIS

hsgldb.write_delay millis 1000 write delay for writing log file entries

If the property is used, the WRITE DELAY property of the database is set the given value. The SQL command for
this property allows the same level of control over the property.

‘SET FI LES WRI TE DELAY {{ TRUE | FALSE } | <seconds value> | <nilliseconds value> MLLIS

textdb.* 0 default properties for new text tables

Properties that override the database engine defaults for newly created text tables. Settings in the text table SET
<t abl enanme> SOURCE <source string> command override both the engine defaults and the database
properties defaults. Individual textdb.* properties are listed in the Text Tables chapter.

185

HyperS@L Properties

When connecting to an in-process database creates a new database, or opens an existing database (i.e. it is the first
connection made to the database by the application), all the user-defined database properties listed in this section can
be specified as URL properties.

When HSQLDB is used in OpenOffice.org, some property values will have a different default. The properties and
values are:

hsgldb.default_table type=cached hsgldb.cache rows=25000; hsgldb.cache size=6000; hsgldb.log_size=10;
hsgldb.nio_data file=false; sgl.enforce_strict_size=true

186

HyperS@L

Chapter 13. HyperSQL Network Listeners

Server, WebServer, and Servlet

Fred Toussi, The HSQL Development Group

$Revision: 3601 $

Copyright 2002-2009 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group

to distribute this document with or without alterations under the terms of the HSQLDB license.
Published $Date: 2010-05-31 20:17:47 -0400 (Mon, 31 May 2010) $

Listeners

As described in the Running and Using HyperSQL chapter, network listeners or servers provide connectivity to
catalogs from different VM processes. The HyperSQL listeners support both ipv4 and ipv6 network addressing.

HyperSQL Server

Thisisthe preferred way of running a database server and the fastest one. This mode uses the proprietary hsql: com-
munications protocol. The following exampl e of the command for starting the server startsthe server with one (default)
database with files named "mydb.*" and the public name (aias) of "xdb".

‘ java -cp ../lib/hsgldb.jar org.hsqgl db. server. Server --database.0 file:nydb --dbnane.0 xdb ‘

Alternatively, a server.properties file can be used for passing the arguments to the server. This file must be located
in the directory where the command isissued.

‘ java -cp ../lib/hsqgldb.jar org. hsqgl db. server. Server ‘

The contents of the server.propertiesfileis described in the next section.

HyperSQL HTTP Server

This method of access is used when the computer hosting the database server is restricted to the HTTP protocol. The
only reason for using this method of accessis restrictions imposed by firewalls on the client or server machines and it
should not be used wherethere are no such restrictions. The HyperSQL HTTP Server isaspecial web server that allows
JDBC clients to connect viaHTTP. The server can also act as a small general-purpose web server for static pages.

Torunan HTTP server, replace the main class for the server in the example command line above with the following:

‘ java -cp ../lib/hsqldb.jar org.hsql db.server. Server ‘

The contents of the server.propertiesfileis described in the next section.

HyperSQL HTTP Servlet

This method of access also uses the HTTP protocal. It is used when a separate servlet engine (or application server)
such as Tomcat or Resin provides access to the database. The Servlet Mode cannot be started independently from the
servlet engine. The Ser vl et class, in the HSQLDB jar, should be installed on the application server to provide the

187

HyperS@L HyperSQL Network Listeners

connection. The database is specified using an application server property. Refer to the source file src/ or g/
hsql db/ server/ Servl et.java toseethedetails.

Both HTTP Server and Servlet modes can only be accessed using the JDBC driver at the client end. They do not
provide aweb front end to the database. The Servlet mode can serve only a single database.

Please note that you do not normally use this mode if you are using the database engine in an application server. In
this situation, connections to a catalog are usually made in-process, or using an external HSQL Server instance.

Server and Web Server Properties

Properties files for running the servers are not created automatically. Y ou should create your own files that contain
server.property=val ue pairsfor each property. Theser ver. properti es orwebserver. properti es files
must be located in the directory where the command to runthe or g. hsql db. server. Server classisissued.

Inall propertiesfiles, values are case-sensitive. All values apart from names of files or pages are required in lowercase

(e.g. server.silent=FALSE will have no effect, but server.silent=f al se will work). Supported properties and their
default values (if any) are asfollows:

Table 13.1. common server and webserver properties

Value Default Description

server.database.0 file:test the catalog type, path and file name of the first database
fileto use

server.dbname.O " lowercase server dias for the first database file

server.database.n NO DEFAULT the catalog type, path and file name of the n'th database
filein use

server.dbname.n NO DEFAULT lowercase server alias for the n'th database file

server.silent true no extensive messages displayed on console

server.trace fal se JDBC trace messages displayed on console

server.address NO DEFAULT I P address of server

server.tls fal se Whether to encrypt network stream. If thisissettot r ue,
then in normal situations you will also need to set prop-
ertiessyst em j avax. net. ssl . keySt ore and
system j avax. net. ssl . keySt or ePasswor d, as
documented elsewhere. Thevalue of server.tlsim-
pacts the default value of ser ver . port .

server.remote_open fal se Allows opening a database path remotely when the first
connection is made

In HyperSQL version 2.0, each server can serve an unlimited number of databases simultaneously. The
server.database.0 property defines the filename / path whereas the server.dbname.O defines the lowercase alias used
by clients to connect to that database. The digit O is incremented for the second database and so on. Vaues for the
server.database.n property can use the mem:, file: or res: prefixes and connection properties as discussed under CON-
NECTIONS. For example,

‘ dat abase. O=mrem t enp; sql . enforce_strict_si ze=true;

Properties or default values specificto ser ver . properti es are

188

HyperS@L HyperSQL Network Listeners

Table 13.2. server properties

Value Default Description

server.port 9001 (nornal) or TCP/IP port used for talking to clients. All databases are
554 (if TLS en- served on the same port.
crypted)

server.no_system_exit true no Syst em exi t () cal whenthe databaseis closed

Properties or default values specific towebser ver . properti es are

Table 13.3. webserver properties

Value Default Description
server.port 80 (normal) or 443|TCP/IP port used for talking to clients
(if TLS encrypted)

server.default_page i ndex. htm the default web page for server

server.root i the location of served pages

.<extension> NO DEFAULT multiple entriessuch as. ht ml =t ext / ht ml define
the mime types of the static files served by the web serv-
er. Seethesourcefor src/ org/ hsql db/ serv-
er/ WbServer.java foralist.

An example of the contents of aser ver. properti es fileisgiven below:

server. dat abase. O=fil e:/opt/db/accounts
server. dbnane. O=account s

server. dat abase. 1=fi | e: / opt/ db/ nmydb
server. dbnane. 1=enrol | ment s

server. dat abase. 2=nem adat abase
server. dbnanme. 2=qui ckdb

Inthe aboveexample, theser ver . properti es fileindicatesthat the server provides accessto 3 different databas-
es. Two of the databases are file-based, while the third is all-in-memory. The aliases for the databases that the users
connectto areaccount s, enrol | nent s and qui ckdb.

All the above properties and their values can be specified on the command line to start the server by omitting the
server. prefix. If aproperty/value pair is specified on the command line, it overrides the property value specified
intheser ver. properties orwebserver. properti es file.

Note

Upgrading: If you have existing custom propertiesfiles, change the val uesto the new naming convention.
Note the use of digits at the end of server.database.n and server.dbname.n properties.

Starting a Server from your application

If you want to start the server from within your application, as opposed to the command line or batch files, you should
create an instance of Server or Web Server, then assign the properties and start the Server. An working example of
thiscanbefoundinthe org. hsql db. t est. Test Base source. The example below sets the same properties
asin the server.properties file example.

\ Hsql Properties p = new Hsql Properties(); |

189

HyperS@L HyperSQL Network Listeners

p. set Property("server. dat abase. 0", "file:/opt/db/accounts");
p. set Property("server. dbnane. 0", "an_al i as");

/'l set up the rest of properties

Server server = new Server();

server.set Properties(p);

server.setLogWiter(null); // can use customwiter
server.setErrWiter(null); // can use customwiter
server.start();

The Server object has severa alternative methods for setting databases and their public names. The server should be
shutdown using the shutdown() method.

Allowing a Connection to Open a Database

If theser ver. renot e_open property is true, the Server works differently from the normal mode. In this mode,
it is not necessary to have any databases listed as server.database.O etc. in the Server startup properties. If there are
databases listed, they are opened as normal. The server does not shutdown when the last database is closed.

In this mode, a connection can be established to a database that is not open or does not exist. The server will open the
database or create it, then return a connection to the database.

The connection URL must include the path to the database, separated with a semicolon from the alias. In the example
below, the database path specified asfil e: C./fil es/ nydat abase is opened and the database alias xdb is
assigned to the database. After this, the next connection to the specified alias will connect to the same database.

Connection c¢ = DriverManager. get Connecti on("jdbc: hsql db: hsql :/ /| ocal host/xdb; file:C /files/
nydat abase", "SA", "");

The path can be afile: or mem: database.

TLS Encryption

Listener TLS Support (a. k. a. SSL)

Blaine Simpson, The HSQL Development Group

$Revision: 3601 $

Published $Date: 2010-05-31 20:17:47 -0400 (Mon, 31 May 2010) $

This section explains how to encrypt the stream between JDBC network clients and HyperSQL Listeners. If you are
running an in-process (non-Listener) setup, this chapter does not apply to you.

Requirements

Hsgldb TLS Support Requirements

» Sun Java 2.x and up. (This is probably possible with IBM's Java, but | don't think anybody has attempted to run
HSQLDB with TLS under IBM's Java, and I'm sure that nobody in the HSQLDB Development Group has docu-
mented how to set up the environment).

 If Java 2.x or 3.x, then you will need to install JSSE . Your server and/or client will start up much slower than
that of Java4.x users. Client-side users will not be able to use the https: JDBC protocol (because the https protocol
handler is not implemented in 2.x/3.x Java JSSE; if there is demand, we could work around this).

* A JKSkeystore containing a private key , in order to run a Listener.

« If you are running the listener side, then you'll need to run aHSQLDB Server or WebServer Listener instance. It
doesn't matter if the underlying database catalogs are new, and it doesn't matter if you are making a new Listener
configuration or encrypting an existing Listener configuration. (Y ou can turn encryption on and off at will).

190

HyperS@L HyperSQL Network Listeners

e Youneed aHSQLDB jar file that was built with JSSE present. If you obtained your HSQLDB 1.7.2-or-later distri-
bution from us, you are all set, because we build with Java 1.4 or later (which contains JSSE). If you build your
own jar file with Java 1.3, make sure to install JSSE first.

Encrypting your JDBC connection
At thistime, only 1-way, server-cert encryption is tested.
Client-Side

Just use one of the following protocol prefixes.

Hsgldb TLSURL Prefixes

* jdbc: hsql db: hsql s://

» jdbc: hsql db: https://

At thistime, the latter will only work for clients running with Java 1.4 or later.

If the listener you wish to connect to is using a certificate approved by your default trust keystore, then there is nothing
else to do. If not, then you need to tell Javato "trust" the server cert. (It's a slight over-simplification to say that if
the server certificate was purchased, then you are al set; if somebody "signed their own" certificate by self-signing
or using a private ca certificate, then you need to set up trust).

First, you need to obtain the cert (only the "public" part of it). Since this cert is passed to al clients, you could obtain
it by writing a Java client that dumpsiit to file, or perhaps by using opensd s client. Sincein most cases, if you want
to trust a non-commercial cert, you probably have access to the server keystore, I'll show an example of how to get
what you need from the server-side JKS keystore.

You may already have an X509 cert for your server. If you have a server keystore, then you can generate a X509
cert like this.

Example 13.1. Exporting certificate from the server'skeystore

‘ keyt ool -export -keystore server.store -alias existing_ alias -file server.cer ‘

Inthisexample, ser ver . cer isthe X509 certificate that you need for the next step.

Now, you need to add this cert to one of the system trust keystores or to a keystore of your own. See the Cus-
tomizing Stores section in JSSERefGuide.html [http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/
JSSERef Guide.html#CustomizingStores] to see where your system trust keystores are. Y ou can put private keystores
anywhere you want to. The following command will add the cert to an existing keystore, or create a new keystore if
client. store doesn't exist.

Example 13.2. Adding a certificateto the client keystore

‘ keytool -inport -trustcacerts -keystore trust.store -alias new alias -file server.cer ‘

If you are making a new keystore, you probably want to start with a copy of your system default keystore which you
can find somewhere under your JAVA HOVE directory (typicallyj re/li b/ security/cacert s foraJDK, but
| forget exactly whereit isfor a JRE).

Unless your OS can't stop other people from writing to your files, you probably do not want to set a password on
the trust keystore.

191

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

HyperS@L HyperSQL Network Listeners

If you added the cert to a system trust store, then you are finished. Otherwise you will need to specify your cus-
tom trust keystore to your client program. The generic way to set the trust keystore is to set the system property
j avax. net. ssl . trust St or e every timethat you run your client program. For example

Example 13.3. Specifying your own trust storeto a JDBC client

‘ java -Djavax. net.ssl.trust Store=/hone/ bl aine/trust.store -jar /path/to/hsqgldb.jar dest-urlid

This example runs the program SglTool . SgiTool has built-in TLS support however, so, for SglTool you can set
t rust st or e on aper-urlid basisin the SglTool configuration file.

Note: The hostname in your database URL must match the Common Name of the server's certificate exactly.
That means that if a site certificate is adnt. com you can not use j dbc: hsql db: hsql s://1 ocal host or
j dbc: hsql db: hsql s: //ww. adnt. com 1100 to connect to it.

If you want more details on anything, see JSSERef Guide.html on Sun'ssite [http://java.sun.com/javase/6/docs/tech-
notes/guides/security/jsse/ JISSERef Guide.html], or inthe subdirectory docs/ gui de/ securi ty/j sse of your Ja-
va SE docs.

Server-Side, aka Listener-Side

Get yoursdf a JKS keystore containing a private key . Then set properties server.tls,
system j avax. net.ssl.keyStore and system javax. net.ssl.keyStorePassword in your
server.properties or webserver.properties file Set server.tls to true,
system j avax. net.ssl.keyStore to the path of the private key JS keystore, and
system j avax. net. ssl . keySt or ePasswor d to the password (of both the keystore and the private key
record-- they must be the same). If you specify relative file path values, they will be resolved relative to the
${user. di r} whentheJRE is started.

A Caution

If you set any password in a .properties (or any other) file, you need to restrict access to the file. On a
good operating system, you can do this like so:

chnod 600 path/to/server. properties

The values and behavior of the system* settings above match the usage documented for
j avax. net. ssl . keySt or ePassword andj avax. net. ssl . keySt or e in the JSSE docs.

Note

Before version 2.0, HyperSQL depended on directly setting the corresponding JSSE properties. The new
idiom is more secure and easier to manage. If you have an old password in a UNIX init script config
file, you should remove it.

JSSE

If you are running Java 4.x or later, then you are all set. Java 1.x users, you are on your own (Sun does not provide a
JSSE that will work with 1.x). Java 2.x and 3.x users continue...

Goto http://java.sun.com/products/jsse/index-103.html 1f you agreeto theterms and meet the requirements, download
the domestic or global JSSE software. All you need from the software distro is the three jar files. If you have a IDK

192

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/products/jsse/index-103.html

HyperS@L HyperSQL Network Listeners

installation, then movethe 3jar filesinto thedirectory $JAVA HOVE/ j re/ | i b/ ext . If you haveaJRE installation,
then move the 3 jar filesinto the directory $JAVA_HOVE/ | i b/ ext .

Pretty painless.

Making a Private-key Keystore

There are two main ways to do this. Either you can use a certificate signed by a certificate authority, or you can make
your own. Onething that you need to know in both casesis, the Common Name of the cert hasto be the exact hostname
that JDBC clientswill usein their database URL.

CA-Signed Cert

I'm not going to tell you how to get a CA-signed SSL certificate. That iswell documented at many other places.

Assuming that you have a standard pem-style private key certificate, here's how you can use openss [http:/
www.openssl.org] and the program DERI npor t to get it into a JKS keystore.

Because | have spent alot of time on this document already, | am just giving you an example.

Example 13.4. Getting a pem-style private key into a JKS keystore

openssl pkcs8 -topk8 -outform DER -in Xpvk.pem -inform PEM -out Xpvk. pk8 -nocrypt

openssl x509 -in Xcert.pem -out Xcert.der -outform DER

java DERI nport new. keystore NEWALI AS Xpvk. pk8 Xcert. der

I mportant
!

Make sure to set the password of the key exactly the same as the password for the keystore!

You need the program DERI nport . cl ass of course. Do some internet searches to find DERI nport . j ava or
DERI mport . cl ass and download it.

If DERImport has become difficult to obtain, | can write a program to do the same thing-- just let me know.

Non-CA-Signed Cert

Runman keyt ool orsee the Creating a Keystore section of JSSERefGuide.html [http://java.sun.com/javase/6/
docs/technotes/gui des/security/j sse/ ISSERef Guide.html#CreateK eystore].

Automatic Server or WebServer startup on UNIX

If you are on UNIX and want to automatically start and stop a Server or WebServer running with encryption, set the
system j avax. net.ssl . keyStoreandsyst em javax. net. ssl. keySt or ePasswor d propertiesas
instructed above, and follow the instructionsin the HyperSQL on UNIX chapter, paying close attentionto the TLS-
related comments in the template config file.

If you are using a private server certificate, make sure to also set the trust store filepath for relevant urlidsin your RC
file, as explained in the sample config file.

Network Access Control

Aka Server ACLs

193

http://www.openssl.org
http://www.openssl.org
http://www.openssl.org
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore

HyperS@L HyperSQL Network Listeners

JDBC connections will always be denied if the supplied user and password are not found in the target catalog. But an
HyperSQL listener can also restrict access at the listener level, even protecting private catal ogs which have insecure
(or default) passwords. If you have an in-process setup, this section of the Guide doesn't apply to you.

Many (in fact, most) distributed database applications don't have application clients connect directly to the database,
but instead encapsulate access in a controlling process. For example, a web app will usually access the data source
on behalf of users, with end-user web browsers never accessing the database directly. In these cases and others, the
security benefits of restricting listener access to specific source addresses is well worth the effort. ACLs work by
restricting access according to the source address of the incoming connection request. This is efficient because the
database engine never even gets the request until it is approved by the ACL filter code.

Thesamplefile sanpl e/ acl . t xt inyour HyperSQL distribution explains how to write an ACL file.

$1d: acl.txt 826 2009-01-17 05:04:52Z unsaved $

Sanpl e Hyper SQ. Network Listener ACL file.

Specify "allow' and "deny" rules

For address specifications, individual addresses, host nanes, and

network addresses with /bit suffix are allowed, but read the caveat about
host nanmes bel ow, under the sanple "l ocal host" rule.

Blank |ines ignored.

Lines with # as the first non-whitespace character are ignored.

al | ow 2001: db8::/32
Allow this 32-bit ipv4 subnet

al | ow | ocal host

You shoul d use nunerical addresses in ACL files, unless you are certain that
the nane will always be known to your network address resol ution system

(assune that you will lose Internet connectivity at sone tine).

Wth a default nane resolution setup on UNIX, you are safe to use nanes

defined in your /etc/hosts file.

deny 192.168.101. 253

Deny a single |P address

In our exanple, 192.168.101.0/24 is our local, organizational network.
192.168.101.253 is the | P address of our Intern's PC

The Intern does not have perm ssion to access our databases directly.

al l ow 192. 168. 101. 0/ 24

Any ipv4 or ipv6 candi date address not matched above will be denied

You put your file wherever it is convenient for you, and specify that path with the property server. acl or
webserver. acl inyour server. properties or webserver. properti es file (depending on whether
your listener instanceisa Ser ver or WebSer ver). You can specify the ACL file path with an absolute or relative
path. If you use arélative path, it must be relativeto the. pr oper ti es file. It's often convenient to name the ACL
fileacl . t xt, in the same directory as your . pr operti es file and specify the property value asjust acl . t xt .
Thisfile nameisintuitive, and things will continue to work as expected if you move or copy the entire directory.

Warning

If your Ser ver or WebSer ver was started with a*. acl property, changes afterwards to the ACL
filewill be picked up immediately by your listener instance. Y ou are advised to use the procedure bel ow
to prevent partial edits or mistakes from crippling your running server.

When you edit your ACL file, it is both more convenient and more secure to test it as explained here before activating
it. You could, of course, test an ACL file by editing it in-place, then trying to connect to your listener with JDBC

194

HyperS@L HyperSQL Network Listeners

clients from various source addresses. Besides being mightily laborious and boring, with this method it isvery easy to
accidentally open access to all source addresses or to deny access to all users until you fix incorrect ACL entries.

The suggested method of creating or changing ACLs is to work with an inactive file (for new ACL files, just don't
enablethe*. acl property yet; for changing an existing file, just copy it to atemporary file and edit the temporary
file). Then usethe Ser ver Acl classtotest it.

Example 13.5. Validating and Testing an ACL file

‘ java -cp path/to/ hsql db.jar org.hsql db. server. ServerAcl path/to/acl.txt ‘

If the specified ACL file fails validation, you will be given details about the problem. Otherwise, the validated rules
will be displayed (including the implicit, default deny rules). Y ou then type in host names and addresses, one-per-line.
Each name or addressistested asif it were aHyperSQL network client address, using the same exact method that the
HyperSQL listener will use. (HyperSQL listenersusethissame Ser ver Acl classto test incoming source addresses).
Server Acl will report the rule which matches and whether access is denied or allowed to that address.

If you have edited a copy of an existing ACL file (as suggested above), then overwrite your live ACL file with your
new, validated ACL file. l.e., copy your temp file over top of your live ACL file.

Server Acl can berunin the same exact way described above, to troubleshoot runtime access issues. If you use an
ACL file and a user or application can't get a connection to the database, you can run Ser ver Acl to quickly and
definitively find if the client is being prohibited by an ACL rule.

195

HyperS@L

Chapter 14. HyperSQL on UNIX

How to quickly get a HyperSQL (aka HSQLDB) Listener up and run-
ning on UNIX, including Mac OS X

Blaine Simpson

$Revision: 3360 $
Published $Date: 2009-12-16 10:03:31 -0500 (Wed, 16 Dec 2009) $

Purpose

This chapter explains how to quickly install, run, and use a HyperSQL Listener (aka Server) on UNIX.

Notethat, unlike atraditional database server, there are many use cases where it makes sense to run HyperSQL without
any listener. This type of setup is called in-process, and is not covered here, since there is no UNIX-specific setup
in that case.

| intend to cover what | think isthe most common UNIX setup: To run amulti-user, externally-accessible catalog with
permanent data persistence. (By the latter | mean that datais stored to disk so that the catalog data will persist across
process shutdowns and startups). | aso cover how to run the Listener as a system daemon.

When | give sample shell commands below, | use commands which will work in Bourne-compatible shells, including
Bash and Korn. Users who insist on using the inferior C-shellswill need to convert.

Installation

Goto http://sourceforge.net/projects/hsgldb and click onthe"files" link. Y ou want the current version. | can't be more
specific because SourceForge/Geeknet are likely to continue changing their interface. See if there's a distribution for
the current HSQL DB version in the format that you want.

If youwant abinary package and weeither don't provideit, or you prefer somebody else'sbuild, you should still find out
the current version of HyperSQL available at SourceForge. It's very likely that you can find abinary package for your
UNIX variant with your OS distributor, http://www.jpackage.org/ , http://sunfreeware.com/ , etc. Nowadays, most
UNI X es have software package management systemswhich check I nternet repositories. Just search the repositoriesfor
"hsgldb" and "hypersgl". The challengeisto find an up-to-date package. Y ou will get better features and support if you
work with the current stable rel ease of HyperSQL. (In particular, HyperSQL version 2.0.0 added tons of new features).
Pay attention to what VM versions your binary package supports. Our builds (version 2.0 and later) document the
Javaversionit wasbuilt withinthefiledoc/ i ndex. ht m , but you can't depend on thisif somebody el se assembled
your distribution. Java jar files are generally compatible with the same or greater major versions. For example,if your
hsql db. j ar wasbuilt with Java 1.3.6-11, then it is compatible with Java versions 1.3.* and greater.

Note

It could very well happen that some of the file formats which | discuss below are not in fact offered. If
so, then we have not gotten around to building them.

Binary installation depends on the package format that you downl oaded.

Installing from a.pkg.Z file This package is only for use by a Solaris super-user. It's a System V package.
Download then uncompress the package with uncompress or gunzip

196

http://sourceforge.net/projects/hsqldb
http://www.jpackage.org/
http://sunfreeware.com/

HyperS@L HyperSQL on UNIX

‘ unconpress fil enane. pkg. Z ‘

Y ou can read about the package by running

‘ pkginfo -1 -d fil ename. pkg ‘

Run pkgadd as root to install.

pkgadd -d fil ename. pkg

Installing from a BSD Port or Pack- Y ou're on your own. | find everything much easier when | install software to
age BSD without their package management systems.

Installing from a.rpmfile Just skip this section if you know how to install an RPM. If you found the RPM
using a software management system, then just haveit install it. The remainder
of item explains a generic command-line method which should work with any
Linux variant. After you download the rpm, you can read about it by running

‘ rpm-qip /path/to/file.rpm ‘

Rpms can be installed or upgraded by running

‘ rpm-Uvh /path/to/file.rpm ‘

asroot. Suse users may want to keep Y ast aware of installed packages by run-
ning rpmthrough Yast: yast2 -i /path/to/file.rpm

Installing from a.zipfile Extract the zip file in an ancestor directory of the new HSQLDB home. You
don't need to create the HSQLDB_HOVE directory because the extraction will
create aversion-labelled directory, and the subdirectory "hsgldb”. This"hsgldb"
directory is your HSQLDB_HOVE, and you can move it to wherever you wish.
If you will be upgrading or maintaining multiple versions of HyperSQL, you
will want to retain the version number in the directory tree somehow.

cd ancestor/ of / new hsql db/ hone
unzip /path/to/file.zip

All thefilesinthe zip archivewill be extracted to underneath anew subdirectory
named like hsql db- 2. 0. 2a/ hsql db.

Take a look at the files you installed. (Under hsql db for zip file installations. Otherwise, use the utilities for
your packaging system). The most important file of the HyperSQL system is hsql db. j ar, which resides in the
subdirectory | i b. Depending on who built your distribution, your file name may have a version label in it, like
hsql db-1.2.3.4.jar.

% I mportant
!

- For the purposes of thischapter, | define HSQLDB_ HOVE to be the parent directory of thelib directory that
containshsql db. j ar . E.g., if your pathto hsql db. j ar is/ a/ b/ hsql db/ i b/ hsql db. j ar,
then your HSQLDB_ HOME is/ a/ b/ hsql db.

Furthermore, unless | state otherwise, al local file pathsthat | give are relative to the HSQLDB_HOVE.

If the description of your distribution says that the hsql db. j ar file will work for your Java version, then you are
finished with installation. Otherwise you need to build anew hsql db. j ar file.

197

HyperS@L HyperSQL on UNIX

If you followed the instructions above and you till don't know what Java version your hsql db. j ar supports, then
try reading documentation filesliker eadme. t xt , READVE. TXT, | NSTALL. t xt etc. (As| said above, our newer
distributions always document the Javaversion for the build, inthefiledoc/ i ndex. ht nl). If that still doesn't help,
then you can just try your hsql db. j ar and seeif it works, or build your own.

To use the supplied hsql db. j ar, just skip to the next section of this document . Otherwise build a new
hsqgl db. j ar.

Procedure 14.1. Building hsgldb.jar

1. If you don't aready have Ant, download the latest stable binary version from http://ant.apache.org . cd to where
you want Ant to live, and extract from the archive with

\ unzip /path/to/file.zip |

or

‘ tar -xzf /path/to/file.tar.gz ‘

or

‘ bunzip2 -c /path/to/file.tar.bz2 | tar -xzf - ‘

Everything will be installed into anew subdirectory named apache- ant - + ver si on. You can rename the
directory after the extraction if you wish.

2. Set the environmental variable JAVA HOVE to the base directory of your Java JRE or SDK, like

| export JAVA HOVE; JAVA_HOME=/ usr/javal 2sdk1.4.0 |

The location is entirely dependent upon your variety of UNIX. Sun's rpm distributions of Java normally install
to/usr/javal sonet hi ng. Sun's System V package distributions of Java (including those that come with
Solaris) normally install to / usr/ somet hi ng, with asym-link from / usr/ j ava to the default version (so
for Solaris you will usualy set JAVA_HOME to/ usr/ j ava).

3. Removetheexisting file HSQLDB _HOVE/ | i b/ hsql db. j ar.

4. cdto HSQLDB_HOVE / bui | d. Make sure that the bin directory under your Ant home is in your search path.
Run the following command.

‘ ant hsql db ‘

Thiswill build anew HSQLDB_HOME/ | i b/ hsql db. j ar.

See the Building HyperSQL Jars appendix if you want to build anything other than hsql db. j ar with al default
settings.

Setting up a HyperSQL Persistent Database Catalog
and a HyperSQL Network Listener

If you installed from an OS-specific package, you may aready have a catalog and listener pre-configured. See if
your packageincludesafilenamed ser ver . properti es (make use of your packaging utilities). If you do, then |
suggest that you still read this section while you poke around, in order to understand your setup.

1. Select aUNIX user to run the database process (VM) as. If this database is for the use of multiple users, or isa
production system (or to emulate a production system), you should dedicate a UNIX user for this purpose. In my

198

http://ant.apache.org

HyperS@L HyperSQL on UNIX

examples, | use the user name hsql db. In this chapter, | refer to this user as the HSQLDB OANER, since that
user will own the database catal og files and the VM processes.

If the account doesn't exist, then create it. On all system-5 UNIXes and most hybrids (including Linux), you can
run (as root) something like

‘ useradd -c ' HSQLDB Dat abase Oaner' -s /bin/bash -m hsql db ‘

(BSD-variant users can use asimilar pw user add hsql db. .. command).

2. Become the HSQLDB_OWNER. Copy the sample file sanpl e/ server. properties to
the HSQLDB_OWNER's home directory and rename it to server. properties. (As a fina reminder,
"sampleserver.properties’ is arelative path, so it is understood to be relative to your HSQLDB_HOVE).

Hsqgl db Server cfg file.
See the Hyper SQL Network Listeners chapter of the HyperSQ User Guide

H* H#*

Each server. database. X setting defines a database "catal og".

|.e., an independent set of data

Each server. database. X setting corresponds exactly to the jdbc: hsqgl db: *
JDBC URL you would use if you wanted to get a direct (In-Process)

Connection to the catal og i nstead of "serving" it.

server. dat abase. O=fi | e: dbO/ dbO

| suggest that, for every file: catal og you define, you add the

connection property "ifexists=true" after the database instance

is created (which happens sinply by starting the Server one tine).
Just append ";ifexists=true" to the file: URL, like so

server. dat abase. 0=fi | e: db0/ dbO; i f exi st s=true

server.dbnane. 0 defaults to "" (i.e. server.dbnanme.n for n==0), but

the catalog definition n will be entirely ignored for n > 0 if you do not
set server.dbname.n. |.e. dbnane setting is required for n > 0, though it
may be set to blank (e.g. "server.dbnanme.3=")

Since the value of the first database (server.database.0) begins with file:, the catalog will be persisted to a set
of files in the specified directory with names beginning with the specified name. Set the path to whatever you
want (relative paths will be relative to the directory containing the properties file). Y ou can read about how to
specify other catalogs of various types, and how to make settings for the listen port and many other thingsin
other chapters of this guide.

3. Set and export the environmental variable CLASSPATH to the value of HSQLDB_HOVE (as described above)
plus"/lib/hsgldb.jar", like

‘ export CLASSPATH, CLASSPATH=/ path/to/ hsql db/lib/hsqldb.jar

In HSQLDB_OANER's home directory, run

‘ nohup java org. hsql db. server. Server &

Thiswill start the Listener processin the background, and will create your new database catalog "db0". Continue
on when you see the message containing HSQLDB server. .. is onli ne.nohup just makes surethat the
command will not quit when you exit the current shell (omit it if that's what you want to do).

Accessing your Database

WEe're going to use SglTool to access the database, so you will need the file sql t ool . j ar in addition to
hsql db. j ar.If sql t ool . j ar isn't dready sitting there beside hsql db. j ar (they both come pre-built), build
it exactly asyou would build hsql db. j ar, except use ant target sql t ool . If your distribution came with a sgltool

199

HyperS@L HyperSQL on UNIX

jar filewithaversionlabd, likesql t ool - 1. 2. 3. 4. ar , that'sfine-- usethat filewhenever | say sql t ool . j ar
below.

Copy the file sanpl e/ sqltool .rc tothe HSQLDB_ OWNER's home directory. Use chnod to make the file
readable and writable only to HSQLDB_ OANER.

$1d: sqgltool.rc 3353 2009-12-15 19: 52: 13Z unsaved $

This is a sanple RC configuration file used by Sql Tool, DatabaseManager,
and any other programthat uses the org. hsqldb.lib. RCData cl ass.
See the docunentation for Sgl Tool for various ways to use this file.

If you have the | east concerns about security, then secure access to
your RC file.

H* F*

You can run Sqgl Tool right now by copying this file to your hone directory
and running

java -jar /path/to/sqgltool.jar mem
This will access the first urlid definition belowin order to use a
personal Menory-Only dat abase.
"url" values may, of course, contain JDBC connection properties, delimted
wi th senicol ons.
As of revision 3347 of SqglFile, you can al so connect to datasources defined
here fromw thin an Sgl Tool session/file with the conmand "\j urlid".

H O HH O H R HH

H*

You can use Java system property values in this file like this: ${user.hone}

The only feature added recently is the optional "transiso" setting,

whi ch may be set to an all-caps transaction isolation level as listed

in the Java APl Spec for java.sql.Connection.

W ndows users are advised to use forward sl ashes instead of reverse sl ashes,
and to avoi d paths containing spaces or other funny characters. (This
recommendati on applies to any Java app, not just Sqgl Tool).

HHHHHH

A personal Menory-Only (non-persistent) database.
urlid mem

url jdbc: hsql db: mem mendbi d

user name SA

passwor d

A personal, local, persistent database.

urlid personal

url jdbc: hsqgl db:file:${user. hone}/db/ personal ; shut down=true

user name SA

passwor d

transi so TRANSACTI ON_READ_COWM TTED

When connecting directly to a file database like this, you should
use the shutdown connection property like this to shut down the DB
properly when you exit the JVM

This is for a hsqldb Server running with default settings on your |ocal
conmputer (and for which you have not changed the password for "SA").
urlid | ocal host-sa

url jdbc: hsqgl db: hsql ://1 ocal host

user name SA

passwor d

Tenplate for a urlid for an Oracl e dat abase.

You will need to put the oracle.jdbc.Oracl eDriver class into your

cl asspat h.

In the great majority of cases, you want to use the file classesl2. zip
(which you can get fromthe directory $ORACLE_HOVE/ jdbc/lib of any

Oracle installation conpatible with your server).

Since you need to add to the classpath, you can't invoke Sqgl Tool with

200

HyperS@L HyperSQL on UNIX

the jar switch, like "java -jar .../hsqgldb.jar..." or

"java -jar .../hsqglsqgltool.jar...".

Put both the HSQLDB jar and cl asses12.zip in your classpath (and export!)
and run sonething like "java org. hsqgl db. util.Sqgl Tool ..."

#urlid cardiff2

#url jdbc:oracle:thin: @egir.adnc. com 1522: TRAFFI C_SI D
#user nane bl ai ne

#password secret password

#driver oracle.jdbc. OracleDriver

Tenplate for a TLS-encrypted HSQLDB Server.

Remenber that the hostnane in hsgls (and https) JDBC URLs must nmatch the
CN of the server certificate (the port and instance alias that follows

are not part of the certificate at all)

You only need to set "truststore" if the server cert is not approved by
your systemdefault truststore (which a comercial certificate probably
woul d be)

#urlid tls

#url jdbc: hsql db: hsql s://db. adnc. com 9001/ | n2
#user name BLAI NE
#password asecr et
#truststore ${user. hone}/cal/ db/db-trust.store

Tenpl ate for a Postgresql database

#urlid bl ai nedb

#url jdbc: postgresql://idun.africawork. org/bl ai nedb
#user nane bl ai ne

#password | osungl

#driver org.postgresql.Driver

Tenplate for a M/SQL dat abase. MSQL has poor JDBC support.
#urlid nysql-testdb

#url jdbc: nmysql://host name: 3306/ dbnane

#user nane r oot

#password hi ddenpwd

#driver com nysql.jdbc. Driver

Note that "databases" in SQ Server and Sybase are traditionally used for
the same purpose as "schemas" with nmore SQL-conpliant databases

Tenplate for a Mcrosoft SQ Server database

#urlid nsprojsvr

#url jdbc: m crosoft:sql server://host nane; Dat abaseNanme=DbNane; Sel ect Met hod=Cur sor
The Sel ect Method setting is required to do nore than one thing on a JDBC
session (I guess Mcrosoft thought nobody would really use Java for

anything other than a "hello world" program

This is for Mcrosoft's SQ Server 2000 driver (requires nssqlserver.jar
and nsutil.jar).

#driver com microsoft.jdbc. sql server. SQLServerDriver

#user name nyuser

#password hi ddenpwd

Tenpl ate for a Sybase dat abase

#urlid sybase

#url jdbc: sybase: Tds: host nane: 4100/ dbnane

#user nane bl ai ne

#password hi ddenpwd

This is for the jConnect driver (requires jconn3.jar)
#driver com sybase.jdbc3.jdbc. SybDri ver

Tenpl ate for Enbedded Derby / Java DB
#urlid derbyl

201

HyperS@L HyperSQL on UNIX

#url jdbc: derby: path/to/ derby/directory;create=true

#user name ${user. nane}

#password any_noaut hbydef aul t

#driver org.apache. derby.jdbc. EnbeddedDri ver

The enbedded Derby driver requires derby.jar.

There' a al so the org.apache. derby.jdbc. CientDriver driver with URL
l'ike jdbc:derby://<server>[:<port>]/databaseName, which requires
derbyclient.jar.

You can use \=to comit, since the Derby team decided (why???)

not to inplenment the SQL standard statenment "commit"!!

Not e that Sqgl Tool can not shut down an enbedded Derby database properly,
since that requires an additional SQ. connection just for that purpose.
However, |'ve never |ost data by not shutting it down properly.

O her than not supporting this quirk of Derby, Sql Tool is mles ahead of ij.

HHHHHHHHHHR

We will be using the "localhost-sa' sample urlid definition from the config file. The JIDBC URL for this urlid is
j dbc: hsql db: hsql : //1 ocal host . That isthe URL for the default catalog of a HyperSQL Listener running
on the default port of the local host. Y ou can read about URL s to connect to other catal ogs with and without listeners
in other chapters of this guide.

Run Sqgl Tool .

‘ java -jar path/to/sqgltool.jar |ocal host-sa ‘

If you get a prompt, then all iswell. If security is of any concern to you at al, then you should change the privileged
password in the database. Use the command SET PASSWORD command to change SA's password.

‘ SET PASSWORD ' newpasswor d' ; ‘

Set a strong password!

Note

If, likemost UNIX System Administrators, you often need to make up strong passwords, | highly suggest
the great littleprogram pwgen [https://sourcef orge. net/ proj ects/pwgen/] .You
can probably get it where you get your other OS packages. The command pwgen - 1 is usualy all
you need.

Notethat with SQL -conformant databaseslike HyperSQL 2.0, user names and passwordsare case sensitive. If youdon't
guote the name, it will be interpreted as upper-case, like any hamed SQL object. (Only for backwards compatibility,
we do make an exception for the special user name SA, but you should always use upper-case "SA" nevertheless).

When you're finished playing, exit with the command\ qg.
If you changed the SA password, then you need to update the password in thesql t ool . r ¢ file accordingly.

You can, of course, also access the database with any JDBC client program. Y ou will need to modify your classpath
toinclude hsql db. j ar aswell asyour client class(es). You can also use the other HSQLDB client programs, such
asorg. hsqgl db. uti | . Dat abasManager Swi ng, agraphical client with asimilar purposeto Sgl Tool .

Y ou canuseany normal UNIX account torunthe JDBC clients, including Sql Tool , aslongastheaccount hasread ac-
cesstothesql t ool . j ar fileandtoansql t ool . r ¢ file. Seethe Utilities Guide about whereto put sql t ool . r c,
how to execute sql files, and other Sql Tool features.

Create additional Accounts

Connect to the database as SA (or any other Administrative user) and run CREATE USER to create new accounts
for your catalog. HSQL DB accounts are database-catal og-specific, not Li st ener -specific.

202

https://sourceforge.net/projects/pwgen/
https://sourceforge.net/projects/pwgen/

HyperS@L HyperSQL on UNIX

In SQL-compliant databases, all database objects are created in a schema. If you don't specify a schema, then the
new object will be created in the default schema. To create a database object, your account (the account that you
connected with) must have the role DBA, or your account must have authorization for the target schema (see the
CREATE SCHEMA command about this last). When you first create a HyperSQL catalog, it has only one database
user-- SA, a DBA account, with an empty string password. Y ou should set a password (as described above). Y ou can
create as many additional usersasyou wish. To makeauser aDBA, you can usethe"ADMIN" optiontothe CREATE
USER command, command, or GRANT the DBA Role to the account after creating it.

Once an object iscreated, the object creator and userswiththe DBA rolewill haveall privilegesto work with that object.
Other users will have only the rights which the pseudo-user PUBLIC has. To give specific users more permissions,
even rights to read objects, you can GRANT permissions for specific objects, grant Roles (which encompass a set of
permissions), or grant the DBA Role itself.

Since only people with a database account may do anything at all with the database, it is often useful to permit other
database usersto view the datain your tables. To optimize performance, reduce contention, and minimize administra-
tion, it is often best to grant SELECT to PUBLIC on table-like objects that need to be accessed by multiple database
users, with the significant exception of any data which you want to keep secret. (Similary with EXECUTE priv for
routines and USAGE priv for other object types). Note that this is not at all eguivalent to giving the world or the
Internet read access to your tables-- you are giving read access to people that have been given accounts for the target
database catal og.

Shutdown

Do aclean database shutdown when you are finished with the database catalog. Y ou need to connect up as SA or some
other Admin user, of course. With SglTool, you can run

‘ java -jar path/to/sqgltool.jar --sqgl 'shutdown;' |ocal host-sa

Y ou don't have to worry about stopping theLi st ener becauseit shuts down automatically when all served database
catalogs are shut down.

Running Hsqldb as a System Daemon

You can, of course, run HSQL DB through inittab on System V UNIXes, but usually an init script is more convenient
and manageable. This section explains how to set up and use our UNIX init script. Our init script is only for use by
root. (That is not to say that the Listener will run as root-- it usually should not).

The main purpose of the init script is to start up a Listener for the database catalogs specified in your
server. properties file; and to gracefully shut down these same catalogs. For each catalog defined by
a server. dat abase. X setting in your .properties file, you must define an administrative "urlid" in your
sqgl t ool . r ¢ (these are used to access the catal ogs for validation and shutdown purposes). Finaly, you list the urlid
names in your init script config file. If, due to firewall issues, you want to run a WebServer instead of a Server, then
make sure you have a healthy WebServer with awebserver.properties set up, adjust your URLsinsql t ool . r ¢, and
set TARGET_CLASS in the config file.

By following the commented examples in the config file, you can start up any number of Server and/or WebServer
listener instances with or without TLS encryption, and each listener instance can serve any number of HyperSQL
catalogs (independent data sets), all with optimal efficiency from a single VM process. There are instructions in
the init script itself about how to run multiple, independently-configured VM processes. Most UNIX installations,
however, will run asingle VM with asingle Listener instance which serves multiple catal ogs, for easier management
and more efficient resource usage.

After you have the init script set up, root can use it anytime to start or stop HSQLDB. (I.e., not just at system bootup
or shutdown).

203

HyperS@L HyperSQL on UNIX

Portability of hsql db init script

The primary design criterion of theinit script is portability. It does not print pretty color startup/shutdown messages as
iscommon in late-model Linuxes and HPUX; and it does not keep subsystem state files or use the startup/shutdown
functions supplied by many UNIXes, because these features are all non-portable.

Offsetting these limitations, this one script does it's intended job great on the UNIX varieties | have tested, and can
easily be modified to accommodate other UNIXes. While you don't have tight integration with OS-specific daemon
administration guis, etc., you do have awell tested and well behaved script that gives good, utilitarian feedback.

Init script Setup Procedure

The strategy taken here is to get the init script to run your single Server or WebServer first (as specified by
TARGET_CLASS). After that's working, you can customize the JVM that is run by running additional Listener in-
stances in it, running your own application in it (embedding), or even overriding HSQLDB behavior with your own
overriding classes.

1. Copytheinit script sanpl e/ hsqgl db.init tohsql db inthe directory where init scripts live on your
variety of UNIX. The most common locationsare/ etc/init.dor/etc/rc.d/init.donSystemV style
UNIXes, /usr/l ocal /etc/rc.donBSD styleUNIXes, and/ Li brary/ St art upl t ems/ hsqgl db on
OS X (you'll need to create the directory for the last).

2. View your server. properti es file. Make a note of every catalog define by a ser ver . dat abase. X
setting. A couple steps down, you will need to set up administrative access for each of these catalogs. If you are
usingour sample server. properties file youwill just need to set up access for the catalog specified
withfi | e: dbO/ dbo.

Note

Pre-2.0 versions of the hsgldb init script required use of .properties settings of the
formser ver . url i d. X. These settings are obsolete and should be removed.

3. Either copy HSQLDB_ OWNER's sql t ool . r ¢ fileinto root's home directory, or set the value of AUTH _FI LE
to the absolute path of HSQLDB_OMERSs sql t ool . r ¢ file. Thisfileisread directly by root, even if you run
hsgldb as non-root (by setting HSQLDB_ OANER in the config file). If you copy thefile, make sureto use chrmod
to restrict permissions on the new copy. The init script will abort with an appropriate exhortation if you have the
permissions set incorrectly.

You need to set up aurlid stanzainyour sql t ool . r ¢ filefor network access (i.e. JIDBC URL with hsql:, hsgls;,
http:, or https:) for each catalog in your ser ver . properti es file. For our example, you need to define a
stanzafor thef i | e: db0/ dbO catalog. Y ou must supply for this catalog, ahsgl: JIDBC URL, an administrative
user name, and the password.

Example 14.1. example sgltool.rc stanza

urlid | ocal hostdbl

url jdbc: hsqgl db: hsqgl://1 ocal host
user name SA

password secret

4. Look at the comment towards the top of theinit script which lists recommended locations for the configuration
file for various UNIX platforms. Copy the sample config file sanpl e/ hsql db. cfg to one of the listed
locations (your choice). Edit the config file according to the instructionsin it. For our example, you will set the
value of URLI DSto | ocal host db1, since that isthe urlid name that we used inthe sql t ool . r ¢ file.

\# $l d: hsqgl db. cfg 3583 2010- 05- 16 01: 49: 52Z unsaved $ \

204

HyperS@L HyperSQL on UNIX

Sanpl e configuration file for HyperSQL Server Listener.
See the "Hyper SQL on UNI X" chapter of the HyperSQL User Cuide.

N.b.!'!I'l'l You must place this in the right |location for your type of UN X
See the init script "hsqgldb" to see where this nust be placed and
what it should be renaned to.

H* H* H*

This file is "sourced" by a Bourne shell, so use Bourne shell syntax.

This file WLL NOT WORK until you set (at |east) the non-commented
variables to the appropriate values for your system

Life will be easier if you avoid all filepaths with spaces or any other
funny characters. Don't ask for support if you ignore this advice.

H* H HH

The URLIDS setting belowis new and REQUI RED. This setting replaces the
server.urlid. X settings which used to be needed in your Server's
properties file.

H* H H*

-- Blaine (blaine dot sinpson at adnt dot con)
JAVA _EXECUTABLE=/ usr/ bi n/java

Unl ess you copied the jar files fromanother system this typically

resides at $HSQLDB HOVE/ | i b/ sqgltool .jar, where $HSQ.DB HOVE i s your HSQ.DB
software base directory.

The file nane may actually have a version label init, like

sqgltool-1.2.3.jar (in which case, you nmust specify the full nane here).

A 'hsgldb.jar' file (with or without version |abel) must reside in the sanme
directory as the specified sqgltool.jar file.

SQLTOOL_JAR PATH=/ opt / hsql db- 2. 0. 0/ hsqgl db/ i b/ sql t ool . j ar

For the sanple value above, there nust also exist a file

[opt/ hsqgl db-2. 0. 0/ hsqgl db/|i b/ hsql db*. j ar.

Where the file "server.properties" or "webserver.properties" resides.
SERVER_HOME=/ opt / hsql db- 2. 0. 0/ hsql db/ dat a

What UNI X user the server will run as.

(The shutdown client is always run as root or the invoker of the init script).
Runs as root by default, but you should take the time to set database file

ownerships to another user and set that user name here.

HSQLDB_OMNER=hsql db

The HSQLDB jar file specified in HSQLDB_JAR PATH above will automatically
be in the class path. This arg specifies additional classpath el ements.

To enbed your own application, add your jar file(s) or class base

directories here, and add your main class to the | NVOC_ADDL_ARGS setting
bel ow. Anot her common use-case for adding to your class path is to nake
classes available to the DB engines for SQL/JRT functions and procedures.
#SERVER _ADDL_CLASSPATH=/ usr/1 ocal / di st/ currencybank. j ar

For startup or shutdown failures, you can save a |ot of debugging tinme by
tenporarily adjusting down MAX _START_SECS and MAX_TERM NATE_SECS to a
little over what it should take for successful startup and shutdown on
your system

H* H HH

We require all Server/WbServer instances to be accessible within
$MAX_START_SECS from when the Server/WbServer is started.

Defaults to 60.

Raise this is you are running lots of DB instances or have a sl ow server.
#MAX_START_SECS=200

H* H HH

Max time to allow for JVMto die after all HSQ.DB instances stopped.

Defaults to 60. Set high because the script will always continue as soon as
the process has stopped. The inportance of this setting is, how long until
a non-stoppi ng-JVM problemw || be detected.

#MAX_TERM NATE_SECS=0

205

HyperS@L HyperSQL on UNIX

NEW AND | MPORTANT! ! !

As noted at the top of this file, this setting replaces the old property
settings server.urlid. X

Sinply list the URLIDs for all DB instances which your *Server starts.

Usual |y, these will exactly mrror the server.database. X settings in your
server.properties or webserver.properties file.

Each urlid listed here nust be defined to a NETWORK url with Admin privil eges
in the AUTH FI LE specified below. (Network type because we use this for
inter-process communi cation)

Separate nultiple values with white space. NO OTHER SPECI AL CHARACTERS!
Make sure to quote the entire value if it contains white space separator(s).
URLI DS=' | ocal host db1'

HHHFHFHHEHH R

These are urlids # ** IN ADDI TION TO URLIDS **, for instances which the init
script should stop but not start.

Most users will not need this setting. |f you need it, you'll knowit.

Defaults to none (i.e., only URLIDS will be stopped).

#SHUTDOWN_URLI DS=' ondemand’

Sqgl Tool authentication file used only for shutdown.

The default value will be sqgltool.rc in root's hone directory, since it is
root who runs the init script.

(See the Sql Tool chapter of the HyperSQ Utilities Guide if you don't

understand this).

#AUTH_FI LE=/ hone/ bl ai ne/ sqltool .rc

Typical users will leave this unset and it will default to

org. hsqgl db. server. Server. |f you need to run the HSQLDB WbServer cl ass
instead, due to a firewall or routing inpedinment, set this to

org. hsqgl db. server. WbServer, see the docs about running WbServr, and
set up a "webserver.properties" file instead of a "server.properties".
The JVWM that is started can invoke many cl asses (see the following item
about that), but this is the server that is used (1) to check status,
(2) to shut down the JVM

#TARCET_CLASS=or g. hsql db. server. WbSer ver

#
#
#
#
#
#
#
#

This is where you may specify both command-1ine paranmeters to TARCGET_CLASS,

pl us any nunber of additional progans to run (along with their command-|ine

paraneters). The Mainlnvoker programis used to enbed these nultiple

static nmain invocations into a single JVM so see the APl spec for

org. hsqgl db. util. Minlnvoker if you want to |earn nore.

N. b. You should only use this setting to set HSQLDB Server or \WbServer

paraneters if you run nultiple instances of this class, since you can use the

server/ webserver. properties file for a single instance.

Every additional class (in addition to the TARGET_CLASS)

nmust be preceded with an enpty string, so that Minlnvoker will know

you are giving a class name. Minlnvoker will invoke the nornal

static main(String[]) method of each such cl ass.

By default, Mainlnvoker will just run TARGET_CLASS with no args.

Exanpl e that runs just the TARCET_CLASS with the specified arguments:

#1 NVOC_ADDL_ARGS=' -si | ent fal se' #but use server.properties property instead!

Exanpl e that runs the TARGET_CLASS plus a WbServer:

#1 NVOC_ADDL_ARGS='"" org. hsql db. server. WbServer"'

Note the enpty string preceding the class nane.

Exanple that starts TARGET_CLASS with an argunment + a WebServer +

your own application with its args (i.e., the HSQLDB Servers are

"enbedded" in your application). (Set SERVER ADDL_CLASSPATH t 00).:

#1 NVOC_ADDL_ARGS=' -silent false "" org. hsgl db. server. WbServer "" com acne. Stone --env prod
| ocal host"

but use server.properties for -silent option instead!

Exanple to run a non-TLS server in sane JVMwith a TLS server. In this

case, TARCET_CLASS is Server which will run both in TLS node by virtue of

setting the tls, keyStore, and keyStorePassword settings in

#

#

#

HHHFHFHHEH R

server*.properties, as described below, plus an "additional" Server with
overridden 'tls' and 'port' settings:
I N\VOC_ADDL_ARGS="'"' org. hsqgl db. server. Server --port 9002 --tls false"

206

HyperS@L HyperSQL on UNIX

This is an inportant use case. |If you run nore than one Server instance,
you can specify different paranmeters for each here, even though only one
server.properties file is supported.

Not e that you use nested quotes to group argunents and to specify the
enpty-string delimter.

H oo HH

The TLS_* settings have been obsol et ed.

To get your server running with TLS, set

system j avax. net. ssl . keySt ore=/ path/to/ your/private. keystore

system j avax. net . ssl . keySt or ePasswor d=secr et Passwor d

server.ssl =true

I'N server.properties or webserver.properties, and

MAKE THE FI LE OWNER- READ- ONLY!

See the TLS Encryption section of the HyperSQ User Guide, paying attention
to the security warning(s).

If you are running with a private server cert, then you will also need to
set "truststore" in the your Sgl Tool config file (location is set by the
AUTH FI LE variable in this file, or it nust be at the default |ocation for
HSQLDB_OWNER) .

HHHFH R EHHH

Any JVM args for the invocation of the JDBC client used to verify DB
instances and to shut them down (Sqgl Tool Sprayer).

Server-side System Properties should normally be set with system?*
settings in the server/webserver.properties file.

Thi s exanpl e specifies the location of a private trust store for TLS
encrypti on.

For multiple args, put quotes around entire val ue.

If you are starting just a TLS encrypted Listener, you need to unconment
this so the init scripts uses TLS to connect.

If using a private keystore, you also need to set "truststore" settings in
the sqgltool.rc file.

#CLI ENT_JVNMARGS=- Dj avax. net . debug=ssl

This sanple val ue displays useful debugging information about TLS/ SSL.

HHHFHFHHEHH R

Any JVM args for the server.

For multiple args, put quotes around entire val ue.

#SERVER_JVMARGS=- Xnx512m

You can set the "javax.net.debug" property on the server side here, in the
same exact way as shown for the client side above.

Verify that theinit script works.

Just run

\ / path/ to/ hsql db

asroot to see the arguments you may use. Notice that you can run

‘ / pat h/ to/ hsql db st at us

at any time to see whether your HSQLDB Li st ener isrunning.

Re-run the script with each of the possible arguments to really test it good. If anything doesn't work right, then
seethe Troubleshooting the Init Script section.

5. Téel your OSto run the init script upon system startup and shutdown. If you are using a UNIX variant that has
/etc/rc.conf or/etc/rc.conf.local (likeBSD variants and Gentoo), you must set "hsgldb_enable"
to "YES' in either of thosefiles. (Justruncd /etc; Is rc.conf rc.conf.local toseeif youhave
one of these files). For good UNIXes that use System V style init, you must set up hard links or soft links either
manually or with management tools (such aschkconfi g ori nsser v) or Gui's (like run level editors).

Thisparagraphisfor Mac OS X usersonly. If you followed theinstructions abov
- . - - ' O - - > - < 4} - < 4} - arTa I ~N e P

e, your init script should reside at
upParameters. pii romn

HyperS@L HyperSQL on UNIX

thedirectory sr ¢/ or g. hsql db/ sanpl e of your HSQL DB distribution to the same directory astheinit script.
Aslong asthesetwofilesresidein/ Li brary/ St ar t upl t ens/ hsql db, your init script isactive (for porta-
bility reasons, it doesn't check for asettingin/ et ¢/ host confi g). Youcanrunit asaSartup Itemby running

‘ SystentStarter {start|stop|restart} Hsql db ‘

Hsqgldb is the service name. See the man page for Syst entSt ar t er . To disable the init script, wipe out the /
Li brary/ St artupltens/ hsql db directory. Hard to believe, but the Mac peopletell methat during system
shutdown the Startup Items don't run at all. Therefore, if you don't want your data corrupted, make sure to run
"SystemStarter stop Hsgldb" before shutting down your Mac.

Follow the examplesin the config file to add additional classesto the server JVM's classpath and to execute additional
classesin your VM. (Seethe SERVER _ADDL_CLASSPATHand | NVOC_ADDL_ARGS items).

Troubleshooting the Init Script

Definitely look at the init script log file, which is at an OS-sependent location, but is usualy at / var/ | og/
hsql db. | og.

Doaps tolook for processescontainingthestringhsql db, andtry to connect to the database from any client. If theinit
script starts up your database successfully, but incorrectly reportsthat it has not, then your problem iswith specification
of urlid(s) or SqlTool setup. If your database really did not start, then skip to the next paragraph. Verify that your
config file assignsaurlid for each catalog defined inser ver . properti es orwebserver. properti es,then
verify that you can run Sgl Tool asroot to connect to the catalogs with these urlids. (For the latter test, use the - -
rcfil e switchif you are setting AUTH_FI LE in theinit script config file).

If your database really isnot starting, then verify that you can su to the database owner account and start the database.
The command su USERNAME -c ... won't work on most UNIXes unless the target user has area login shell.
Therefore, if you try to tighten up security by disabling this user's login shell, you will break the init script. If these
possibilities don't pan out, then debug the init script or seek help, as described below.

To debug the init script, run it in verbose mode to see exactly what is happening (and perhaps manually run the steps
that are suspect). Torunaninit script (in fact, any shshell script) in verbose mode, usesh withthe- x or - v switch, like

‘ sh -x path/to/hsqldb start |

See the man page for sh if you don't know the difference between - v and - x.

If you want troubleshooting help, use the HSQLDB lists/forums. Make sure to include the revision number from your
hsql db init script (it's towards the top in the line that starts like "# $Id:"), and the output of arun of

‘ sh -x path/to/hsgldb start > /tnp/hstart.log 2>&1 ‘

Upgrading
This section is for users who are using our UNIX init script, and who are upgrading their HyperSQL installation.

Most users will not have customized the init script itself, and your customizations will all be encapsulated in the
init script configuration file. These users should just overwrite their init script with a new one from the HyperSQL
installation, and manually merge config file settings. First, just copy the file/ sanpl e/ hsql db. i ni t over top of
of your init script (wherever it runs from). Then update your old config file according to the instructions in the new
config filetemplate at sanpl e/ hsql db. cf g. Youwill haveto change very few settings. If you are upgrading from
apre-2.0 installation to a post-2.0 installation, you will need to (1) add the setting URLI DS, as described above and
in the inline comments, and (2) replace variable HSQLDB_JAR_PATH with SQLTOOL_JAR_PATH which (if you
haven't guessed) should be set to the path to your sql t ool . j ar file.

208

HyperS@L HyperSQL on UNIX

Users who customized their init script will need to merge their customizations into the new init script.

209

HyperS@L

Appendix A. Lists of Keywords

List of SQL Keywords

Fred Toussi

$Revision: 847 $

Published $Date: 2009-01-19 22:24:49 +0000 (Mon, 19 Jan 2009) $

List of SQL Standard Keywords

According to the SQL Standard, the SQL Language keywords cannot be used as identifiers (names of database objects
such as columns and tables). HyperSQL has two modes of operation, which are selected with the SET DATABASE
SQL NAMES { TRUE | FALSE } to allow or disallow the keywords as identifiers. The default mode is FALSE
and allows the use of most keywords as identifiers. Even in this mode, keywords cannot be used as USER or ROLE
identifiers.

ABSALL ALLOCATE ALTER AND ANY ARE ARRAY AS ASENSITIVE ASYMMETRIC AT ATOMIC AU-
THORIZATION AVG

BEGIN BETWEEN BIGINT BINARY BLOB BOOLEAN BOTH BY

CALL CALLED CARDINALITY CASCADED CASE CAST CEIL CEILING CHAR CHAR_LENGTH
CHARACTER CHARACTER_LENGTH CHECK CLOB CLOSE COALESCE COLLATE COLLECT
COLUMN COMMIT COMPARABLE CONDITION CONNECT CONSTRAINT CONVERT CORR
CORRESPONDING COUNT COVAR_POP COVAR SAMP CREATE CROSS CUBE CUME_DIST
CURRENT CURRENT_CATALOG CURRENT_DATE CURRENT_DEFAULT_TRANSFORM_GROUP
CURRENT_PATH CURRENT_ROLE CURRENT_SCHEMA CURRENT_TIME CURRENT_TIMESTAMP
CURRENT_TRANSFORM_GROUP_FOR_TYPE CURRENT_USER CURSOR CYCLE

DATE DAY DEALLOCATE DEC DECIMAL DECLARE DEFAULT DELETE DENSE RANK DEREF DE-
SCRIBE DETERMINISTIC DISCONNECT DISTINCT DO DOUBLE DROP DYNAMIC

EACH ELEMENT ELSE ELSEIF END END_EXEC ESCAPE EVERY EXCEPT EXEC EXECUTE EXISTSEXIT
EXP EXTERNAL EXTRACT

FALSE FETCH FILTER FIRST_VALUE FLOAT FLOOR FOR FOREIGN FREE FROM FULL FUNCTION FU-
SION

GET GLOBAL GRANT GROUP GROUPING
HANDLER HAVING HOLD HOUR

IDENTITY IN INDICATOR INNER INOUT INSENSITIVE INSERT INT INTEGER INTERSECT INTERSEC-
TION INTERVAL INTO ISITERATE

JOIN
LAG

LANGUAGE LARGE LAST_VALUE LATERAL LEAD LEADING LEAVE LEFT LIKE LIKE_REGEX LN LO-
CAL LOCALTIME LOCALTIMESTAMP LOOP LOWER

MATCH MAX MAX_CARDINALITY MEMBER MERGE METHOD MIN MINUTE MOD MODIFIESMODULE
MONTH MULTISET

NATIONAL NATURAL NCHAR NCLOB NEW NO NONE NORMALIZE NOT NTH_VALUE NTILE NULL
NULLIF NUMERIC

210

HyperS@L Lists of Keywords

OCCURRENCES_REGEX OCTET_LENGTH OF OFFSET OLD ON ONLY OPEN OR ORDER OUT OUTER
OVER OVERLAPS OVERLAY

PARAMETER PARTITION PERCENT_RANK PERCENTILE_CONT PERCENTILE DISC POSITION
POSITION_REGEX POWER PRECISION PREPARE PRIMARY PROCEDURE

RANGE RANK READSREAL RECURSIVE REF REFERENCES REFERENCING REGR_AVGX REGR_AVGY
REGR_COUNT REGR_INTERCEPT REGR_R2 REGR_SLOPE REGR_SXX REGR_SXY REGR_SYY RE-
LEASE REPEAT RESIGNAL RESULT RETURN RETURNS REVOKE RIGHT ROLLBACK ROLLUP ROW
ROW_NUMBER ROWS

SAVEPOINT SCOPE SCROLL SEARCH SECOND SELECT SENSITIVE SESSION_USER SET SIGNAL
SIMILAR SMALLINT SOME SPECIFIC SPECIFICTYPE SQL SQLEXCEPTION SQLSTATE SQLWARN-
ING SQRT STACKED START STATIC STDDEV_POP STDDEV_SAMP SUBMULTISET SUBSTRING
SUBSTRING_REGEX SUM SYMMETRIC SYSTEM SYSTEM_USER

TABLETABLESAMPLETHEN TIMETIMESTAMPTIMEZONE_HOUR TIMEZONE_MINUTE TO TRAILING
TRANSLATE TRANSLATE_REGEX TRANSLATION TREAT TRIGGER TRIM TRIM_ARRAY TRUE TRUN-
CATE

UESCAPE UNDO UNION UNIQUE UNKNOWN UNNEST UNTIL UPDATE UPPER USER USING
VALUE VALUESVAR_POPVAR_SAMP VARBINARY VARCHAR VARYING
WHEN WHENEVER WHERE WIDTH_BUCKET WINDOW WITH WITHIN WITHOUT WHILE

YEAR

List of SQL Keywords Disallowed as HyperSQL Identi-
fiers

A subset of SQL Standard keywords cannot be used at all as HyperSQL identifiers. The keywords are as follows:
ADMIN AND ALL ANY ASAT AVG

BETWEEN BOTH BY

CALL CASE CAST COALESCE CORRESPONDING CONVERT COUNT CREATE CROSS
DISTINCT DROP

ELSE END EVERY EXISTS EXCEPT

FOR FROM FULL

GRANT GROUP

HAVING

IN INNER INTERSECT INTO IS

JOIN

LEFT LEADING LIKE

MAX MIN

211

HyperS@L Lists of Keywords

NATURAL NOT NULLIF

ON ORDER OR OUTER

PRIMARY

REFERENCES RIGHT

SELECT SET SOME STDDEV_POP STDDEV_SAMP SUM
TABLE THEN TO TRAILING TRIGGER

UNION UNIQUE USING
VALUESVAR_POPVAR_SAMP

WHEN WHERE WITH

212

HyperS@L

Appendix B. Building HyperSQL Jars

How to build customized or specialized jar files

Fred Toussi

$Revision: 3556 $

Published $Date; 2010-03-26 19:09:40 -0400 (Fri, 26 Mar 2010) $

Purpose

From 2.0, the supplied hsql db. j ar fileis built with Java 1.6. If you want to run with a 1.5 or older VM, or if
you want to use an aternative jar (hsql db-mi n. j ar, etc.) you must build the desired jar with a Java JDK and
Antversion 1.7.

Building with Apache Ant

Y ou should use version 1.7.x of Ant (Another Neat Tool) to do builds with HyperSQL.

Obtaining Ant

Ant isapart of the Jakarta/Apache Project.
* Home of the Apache Ant project [http://ant.apache.org]

* The Ingtaling Ant [http://ant.apache.org/manual/install.html#installing] page of the Ant Manual [http://
ant.apache.org/manual]. Follow the directions for your platform.

Building Hsqgldb with Ant

Once you have unpacked the zip package for hsgldb, under the/ hsql db folder, in/ bui | d thereisabui | d. xm
filethat buildsthe hsql db. j ar with Ant (Ant must be already installed). To useit, changeto/ bui | d then type:

‘ ant -projecthelp

This displays the available ant targets, which you can supply as command line arguments to ant. These include

hsgldb tobuildthehsql db. j ar file

explainjars Lists all targets which build jar files, with an explanation of the purposes of the different jars.
clean to clean up the /classes directory that is created

clean-all to remove the old jar and doc files as well

javadoc to build javadoc

hsgldbmain to build asmaller jar for HSQLDB that does not contain utilities

hsgljdbc to build an extremely small jar containing only the client-side JDBC driver (can connect only to

aHyperSQL Server).

hsgldbmin to build asmall jar that supports in-process catal ogs, but neither running nor connecting to Hyper-
SQL Servers.
sqgltool to build sgltool.jar, which contains only the SglTool classes.

213

http://ant.apache.org
http://ant.apache.org
http://ant.apache.org/manual/install.html#installing
http://ant.apache.org/manual/install.html#installing
http://ant.apache.org/manual
http://ant.apache.org/manual
http://ant.apache.org/manual

HyperS@L Building HyperSQL Jars

Many moretargets are available. Runant - p andant expl ai nj ars.
HSQL DB can be built in any combination of two JRE (Java Runtime Environment) versions and many jar file sizes.

A jar built with an older JRE is compatible for use with a newer JRE (you can compile with Java 1.5 and run with
1.6). But the newer JDBC capabilities of the JRE will be not be available.

The client jar (hsql j dbc. j ar) contains only the HSQLDB JDBC Driver client. The smallest engine jar
(hsql dbmi n. j ar) containsthe engine and the HSQL DB JDBC Driver client. Thedefault size (hsql db. j ar) aso
contains server mode support and the utilities. The largest size (hsql dbt est . j ar)includes some test classes as
well. Before building thehsql dbt est . j ar package, you should download the junit jar from http://www.junit.org
and putitinthe/ | i b directory, dongsideser vl et . j ar, whichisincluded in the .zip package.

If you want your code built for high performance, as opposed to debugging (in the same way that we make our pro-
duction distributions), make afile named bui | d. properti es inyour build directory with the contents

‘build.debug: fal se ‘

The resulting Java binaries will be faster and smaller, at the cost of exception stack traces not identifying source code
locations (which can be extremely useful for debugging).

After installing Ant on your system use the following command from the / bui | d directory. Just run ant ex-
pl ai nj ar s for aconciselist of all availablejar files.

‘ant expl ai nj ars ‘

The command displays alist of different options for building different sizes of the HSQLDB Jar. The default is built
using:

Example B.1. Buiding the standard Hsgldb jar filewith Ant

‘ant hsql db

The Ant method always builds ajar with the JDK that is used by Ant and specified inits JAVA_HOME environment
variable.

Building for Older JDKs

HyperSQL version 2.0 cannot be directly compiled or used with JDK 1.4. It may be possible to use the RetroTransl ator
tool to achievethis. The suggested procedureisasfollows:. First use Ant with JDK 1.5 and build the jar. Then trandate
the jar using RetroTranslator with backport (which bundles replacement classes for concurrency control). Thistrans-
lation should cover the concurrency features that are specific to version 1.5 and later.

ant sw tchtoj dk14
ant hsql db
-- translate the jar

Building with IDE's

All HyperSQL source files are supplied ready to compile. There is no complex pre-compile stage. It is therefore
possible to compile the sources with an IDE, without using ant. Only if compilation with Java 1.5 is required, you
should first run the Ant code switcher task before compiling and remove from the source directories afew source files
that are specific to Java 6 (these are listed in the build.xml file).

214

http://www.junit.org

HyperS@L Building HyperSQL Jars

Hsqldb CodeSwitcher

CodeSwitcher is atool to manage different version of Java source code. It allows to compile HyperSQL for different
JDKs. It is something like aprecompiler in C but it works directly on the source code and does not create intermediate
output or extrafiles.

CodeSwitcher is used internally in the Ant build. Y ou do not have to use it separately to compile HyperSQL.

CodeSwitcher reads the source code of a file, removes comments where appropriate and comments out the blocks
that are not used for a particular version of the file. This operation is done for all files of a defined directory, and all
subdirectories.

Example B.2. Example sour ce code before CodeSwitcher isrun

/1 #i f def JAVA2

properties. store(out, "hsql db dat abase");
/] #el se
| *

properties. save(out, "hsqgl db dat abase");
*/

/| #endi f

The next step isto run CodeSwitcher.

Example B.3. CodeSwitcher command line invocation

java org. hsqgldb.util.CodeSw tcher . -JAVA2

The'." meansthe program works on the current directory (all subdirectoriesare processed recursively). - JAVA2 means
the code labelled with JAV A2 must be switched off.

Example B.4. Sour ce code after CodeSwitcher processing

/1 #i f def JAVA2
/%
pProperties.store(out, "hsgl db dat abase");
2f
/I #el se
pProperties. save(out, "hsql db dat abase");

/| #endi f

215

HyperS@L Building HyperSQL Jars

For detailed information on the command line optionsrun j ava or g. hsql db. uti |l . CodeSwi t cher. Usage
examples can be found in the build.xml fileinthe/ bui | d directory.

Building documentation

The JavaDoc can be built simply by invoking the javadoc target.

The two Guides arein DocBook XML source format. To rebuild, run the Ant target gen- docs. Instructions will be
displayed. Seethefiledoc- src/ r eadne- docaut hor s. t xt for tips.

216

HyperS@L

Appendix C. HyperSQL with OpenOffice.org

How to use HyperSQL with OpenOffice.org

Fred Toussi

$Revision: 3498 $

Published $Date; 2010-03-06 12:42:28 -0500 (Sat, 06 Mar 2010) $

HyperSQL with OpenOffice.org

OpenOffice.org includes HyperSQL and uses it for embedded databases. Our collaboration with OpenOffice.org de-
velopers over the last few years has benefited the development and maturity of HyperSQL. Before integration into
000, HSQL DB wasintended solely for application-specific database access. The application devel oper was expected
to resolve any integration issues. Because OpenOffice.org is used by a vast range of users, from schoolchildren to
corporate devel opers, amuch higher level of quality assurance has been required and we have achieved it with constant
help and feedback from OOo users and devel opers.

Apart from embedded use, you may want to use OpenOffic.org with a HyperSQL server instance. The typical use for
thisisto allow multiple office users accessing the same database. There is, however, a strong case for using OOo to
develop your database schema and application, even if the database isintended for your own application.

Using OpenOffice.org as a Database Tool

OpenOffice.org is a very powerful database front end. If you want to create schemas, edit tables, edit the database
contents manually, design and produce well-formatted reports, then OpenOffice.org is probably the best open source
tools currently available.

To connect from OpenOffice.org to your database, first run alocal server instance for the database. Thisis describes
in the Network Listeners chapter of this guide.

When you connect from OpenOffice.org, you must specify connection to an external database and use the URL prop-
erty "default_schema=true". For example, the URL to connect the local database may be like

‘ j dbc; hsql db: hsql : // | ocal host/ nydb; def aul t _schema=t r ue ‘

Theonly current limitation isthat OpenOffice.org only workswith the PUBLIC schema. Thislimitation will hopefully
removed in the future versions of OOo.

When using of HyperSQL with OO0, you must use the HyperSQL jar that is supplied with OOo. This wil hopefuly
be aversion 2.0 jar in the future versions of OOo.

Converting .odb files to use with HyperSQL Server

Y ou may already have an OOo database file, which you want to use outside OOo, or as a server database. Thefileis
in fact in the standard ZIP format and contains the normal HyperSQL database files. Just use a utility such as 7Zip
to expand the .odb file. In the /db directory, there are files such as .script, .data, etc. Just rename these files into
mydb.script, mydb.data, etc. Y ou can now open the mydb database directly with HyperSQL as an embedded database
or as aserver instance.

217

HyperS@L

Appendix D. HyperSQL File Links

HyperSQL Files referred to in this Guide

HyperSQL files referred to in the text may be retrieved from the canonical HyperSQL documentation site, http://

hsgldb.org/doc/2.0, or from the same location you are reading this page from.

Note

will function.

If you are reading this document with astandalone PDF reader, only the http://hsgldb.org/doc/2.0/

... links

Pairs of local + http://hsgldb.org/doc/2.0 links for referenced files.

* Local: ../apidocs/org/hsgldb/jdbe/IDBCConnection.html
http://hsgldb.org/doc/2.0/apidocs/org/hsgl db/jdbc/IDBCConnection.html

e Locd: ../apidocs/org/hsgldb/jdbc/IDBCDriver.html
http://hsgldb.org/doc/2.0/api docs/org/hsgl db/jdbc/IDBCDriver.html

e Locdl: ../apidocg/org/hsgldb/jdbc/IDBCDatabaseM etaData.html
http://hsqldb.org/doc/2.0/apidocs/org/hsgl db/jdbc/IDBCDatabaseM etaData.html

» Locd: ../apidocg/org/hsgldb/jdbc/IDBCResultSet.html
http://hsgldb.org/doc/2.0/apidocs/org/hsgl db/jdbc/IDBCResul tSet.html

» Locd: ../apidocg/org/hsgldb/jdbe/IDBCStatement.html
http://hsgldb.org/doc/2.0/apidocs/org/hsgl db/jdbc/IDBCStatement.html

* Locd: ../apidocg/org/hsgldb/jdbe/IDBCPreparedStatement.html
http://hsqldb.org/doc/2.0/api docs/org/hsgl db/jdbc/JIDB CPreparedStatement.html

» Locd: ../apidocs/org/hsgldb/util/Mainlnvoker.html
http://hsgldb.org/doc/2.0/apidocs/org/hsgldb/util/Mainlnvoker.html

» Local: ../apidocsg/index.html
http://hsgldb.org/doc/2.0/apidocs/

e Locd: ../verbatim/src/org/hsgldb/server/Serviet.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/server/Servlet.java

» Locd: ../verbatim/src/org/hsgldb/Tokens.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/ Tokens.java

» Locd: ../verbatim/src/org/hsgldb/server/WebServer.java

http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/server/WebServer.java

218

../apidocs/org/hsqldb/jdbc/JDBCConnection.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCConnection.html
../apidocs/org/hsqldb/jdbc/JDBCDriver.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCDriver.html
../apidocs/org/hsqldb/jdbc/JDBCDatabaseMetaData.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCDatabaseMetaData.html
../apidocs/org/hsqldb/jdbc/JDBCResultSet.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCResultSet.html
../apidocs/org/hsqldb/jdbc/JDBCStatement.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCStatement.html
../apidocs/org/hsqldb/jdbc/JDBCPreparedStatement.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jdbc/JDBCPreparedStatement.html
../apidocs/org/hsqldb/util/MainInvoker.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/util/MainInvoker.html
../apidocs/index.html
http://hsqldb.org/doc/2.0/apidocs/
../verbatim/src/org/hsqldb/server/Servlet.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/server/Servlet.java
../verbatim/src/org/hsqldb/Tokens.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/Tokens.java
../verbatim/src/org/hsqldb/server/WebServer.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/server/WebServer.java

HyperS@L HyperSQL File Links

e Locd: ../verbatim/src/org/hsgldb/test/TestBase.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/test/ TestBase.java

* Local: ../verbatim/src/org/hsgldb/Trigger.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsgldb/Trigger.java

» Locd: ../verbatim/src/org/hsgldb/sample/TriggerSamplejava
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgl db/test/sampl e/ TriggerSample.java

e Locdl: ../verbatim/src/org/hsgldb/util/Maininvoker.java
http://hsgldb.org/doc/2.0/verbatim/src/org/hsgldb/util /M ainlnvoker.java

* Local: ../verbatim/sample/hsgldb.cfg
http://hsgldb.org/doc/2.0/verbatim/sample/hsgldb.cfg

» Local: ../verbatim/sample/acl.txt
http://hsgldb.org/doc/2.0/verbatim/sampl e/acl.txt

e Locd: ../verbatim/sample/server.properties
http://hsqldb.org/doc/2.0/verbatim/sampl e/server.properties

* Local: ../verbatim/sample/sgltool.rc
http://hsgldb.org/doc/2.0/verbatim/sample/sgltool.rc

* Loca: ../verbatim/sample/hsgldb.init

http://hsgldb.org/doc/2.0/verbatim/sampl e/hsgldb.init

219

../verbatim/src/org/hsqldb/test/TestBase.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/test/TestBase.java
../verbatim/src/org/hsqldb/Trigger.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/Trigger.java
../verbatim/src/org/hsqldb/sample/TriggerSample.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/test/sample/TriggerSample.java
../verbatim/src/org/hsqldb/util/MainInvoker.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/util/MainInvoker.java
../verbatim/sample/hsqldb.cfg
http://hsqldb.org/doc/2.0/verbatim/sample/hsqldb.cfg
../verbatim/sample/acl.txt
http://hsqldb.org/doc/2.0/verbatim/sample/acl.txt
../verbatim/sample/server.properties
http://hsqldb.org/doc/2.0/verbatim/sample/server.properties
../verbatim/sample/sqltool.rc
http://hsqldb.org/doc/2.0/verbatim/sample/sqltool.rc
../verbatim/sample/hsqldb.init
http://hsqldb.org/doc/2.0/verbatim/sample/hsqldb.init

HyperS@L

SQL Index

Symbols
_SYSTEM ROLE, 76

A

ABSfunction, 147

ACOS function, 147

ADD COLUMN, 53

ADD CONSTRAINT, 55

ADD DOMAIN CONSTRAINT, 57
aggregate function, 102

ALL and ANY predicates, 99
ALTER COLUMN, 53

alter column nullability, 54

ALTER DOMAIN, 56

alter identity column, 54

ALTER routine, 60

ALTER SEQUENCE, 62

ALTER TABLE, 53

ALTER USER ... SET INITIAL SCHEMA, 79
ALTER USER ... SET PASSWORD, 78
ALTER view, 56

ASCII function, 143

ASIN function, 147

ATANZ2 function, 147

ATAN function, 147
AUTHORIZATION IDENTIFIER, 76

B

BACKUP DATABASE, 172
BETWEEN predicate, 97
binary literal, 87

BINARY types, 13
BIT_LENGTH function, 145
BITAND function, 147

bit literal, 87

BITOR function, 147

BIT types, 14

BITXOR function, 148
boolean literal, 88
BOOLEAN types, 12
boolean value expression, 96

C

CARDINALITY function, 155
CASCADE or RESTRICT, 45
case expression, 92

CASE WHEN in routines, 123
CAST, 93

CEIL function, 147
CHANGE_AUTHORIZATION, 77

CHARACTER _LENGTH, 145
character literal, 86

CHARACTER types, 12

character value function, 95

CHECK constraint, 51
CHECKPOINT, 172

COALESCE expression, 92
COALESCE function, 155
COLLATE, 102

column definition, 48

column reference, 90

COMMENT, 45

COMMIT, 34

comparison predicate, 97

CONCAT function, 143
CONSTRAINT, 102
CONSTRAINT (table constraint), 49
CONSTRAINT name and characteristics, 49
contextually typed value specification, 90
CONVERT function, 155
COSfunction, 148

COT function, 148
CREATE_SCHEMA ROLE, 77
CREATE AGGREGATE FUNCTION, 129
CREATE ASSERTION, 65
CREATE CAST, 64

CREATE CHARACTER SET, 64
CREATE COLLATION, 64
CREATE DOMAIN, 56

CREATE FUNCTION, 131
CREATE INDEX, 63

CREATE PROCEDURE, 131
CREATE ROLE, 79

CREATE SCHEMA, 46

CREATE SEQUENCE, 61
CREATE TABLE, 47

CREATE TRANSLATION, 65
CREATE TRIGGER, 57, 139
CREATETYPE, 63

CREATE USER, 78

CREATE VIEW, 55

CROSS JOIN, 107

CRYPT_KEY, 173

CRYPT_KEY function, 157
CURDATE function, 151
CURRENT_CATALOG function, 158
CURRENT_DATE function, 151
CURRENT_ROLE function, 158
CURRENT_SCHEMA function, 158
CURRENT_TIME function, 151
CURRENT_TIMESTAMP function, 151
CURRENT_USER function, 157
CURTIME function, 151

220

HyperS@L

D

DATABASE_ISOLATION_LEVEL function, 159

DATABASE _TIMEZONE function, 150
DATABASE VERSION function, 157
DATABASE function, 157
DATEADD function, 154
DATEDIFF function, 154
datetime and interval literal, 88
Datetime Operations, 16
DATETIME types, 15

datetime value expression, 95
datetime value function, 95
DAYNAME function, 152

DAY OFMONTH function, 152
DAY OFWEEK function, 152
DAY OFY EAR function, 152
DBA ROLE, 76

DECODE function, 156
DEFAULT clause, 49
DEGREES function, 148
DELETE FROM, 112
DETERMINISTIC characteristic, 134
DIFFERENCE function, 143
DISCONNECT, 35

DROP ASSERTION, 65

DROP CAST, 64

DROP CHARACTER SET, 64
DROP COLLATION, 65

DROP COLUMN, 54

DROP CONSTRAINT, 55
DROP DEFAULT (table), 54
DROP DOMAIN, 57

DROP DOMAIN CONSTRAINT, 57
DROP DOMAIN DEFAULT, 57
DROP INDEX, 63

DROP ROLE, 79

DROP routine, 61

DROP SCHEMA, 47

DROP SEQUENCE, 62

DROP TABLE, 55

DROP TRANSLATION, 65
DROP TRIGGER, 59, 141
DROP USER, 78

DROPVIEW, 56

DYNAMIC RESULT SETS, 135

E

EXISTS predicate, 100
EXP function, 148
EXTERNAL NAME, 133
EXTRACT function, 150

F

FLOOR function, 148
FOREIGN KEY constraint, 50

G

GRANTED BY, 80

GRANT privilege, 80

GRANT role, 81

GREATEST function, 156
GROUPING OPERATIONS, 110

H

HEXTORAW function, 143
HOUR function, 152

I

identifier chain, 89

identifier definition, 44, 75
IDENTITY function, 157

IF EXISTS, 45

IFNULL function, 156

IF STATEMENT, 124

IN predicate, 98

INSERT function, 143

INSERT INTO, 113

interval absolute value function, 96
interval term, 95

INTERVAL types, 18
ISAUTOCOMMIT function, 158
ISDISTINCT predicate, 101
ISNULL predicate, 99
ISOLATION_LEVEL function, 159

ISREADONLYDATABASEFILES function, 158

ISREADONLY DATABASE function, 158
ISREADONLY SESSION function, 158

J

JOIN USING, 108
JOIN with condition, 108

L

LANGUAGE, 133

LCASE function, 143
LEAST function, 156
LEFT function, 144
LENGTH function, 144
LIKE predicate, 98

LN function, 148
LOCALTIME function, 151
LOCALTIMESTAMP function, 151
LOCATE function, 144
LOCK TABLE, 33

221

HyperS@L

SQL Index

LOG10 function, 149
LOG function, 148
LTRIM function, 144

M

MATCH predicate, 100
MAX_CARDINALITY function, 155
MERGE INTO, 115

MINUTE function, 152

MOD function, 149

MONTH function, 152
MONTHNAME function, 152

N

name resolution, 110
naming in joined table, 109
naming in select list, 110
NATURAL JOIN, 108
NEXT VALUE FOR, 93
NOW function, 153
NULLIF expression, 92
NULLIF function, 156
NULL INPUT, 134
numeric literal, 87
NUMERIC types, 10
numeric value expression, 94
numeric value function, 94
NVL function, 157

O

OCTET_LENGTH function, 145
OTHER type, 14

OUTER JOIN, 108
OVERLAPS predicate, 101
OVERLAY function, 146

P

PATH, 101

Pl function, 149

POSITION function, 146
POWER function, 149
PRIMARY KEY constraint, 50
PUBLIC ROLE, 76

Q

QUARTER function, 153

R

RADIANS function, 149

RAND function, 149

RAWTOHEX function, 144
REGEXP_MATCHES function, 144

RELEASE SAVEPOINT, 34
RENAME, 45

REPEAT function, 144
REPLACE function, 144
RETURN, 124

RETURNS, 132

REVERSE function, 144
REVOKE, 81

REVOKE ROLE, 81
RIGHT function, 145
ROLLBACK, 34
ROLLBACK TO SAVEPOINT, 34
ROUND function, 149
routine body, 132

routine invocation, 102

row value expression, 91
RTRIM function, 145

S

SA USER, 77

SAVEPOINT, 34

SAVEPOINT LEVEL, 135

schemaroutine, 59

SCRIPT, 173

search condition, 101

SECOND function, 153

SECONDS SINCE_MIDNIGHT function, 153
SELECT : SINGLE ROW, 121
SESSION_ISOLATION_LEVEL function, 159
SESSION_TIMEZONE function, 150
SESSION_USER function, 158

SET AUTOCOMMIT, 32

SET CATALOG, 36

set clause in UPDATE and MERGE statements, 115
SET CONSTRAINTS, 33

SET DATABASE COLLATION, 173

SET DATABASE DEFAULT INITIAL SCHEMA, 79
SET DATABASE DEFAULT RESULT MEMORY
ROWS, 173

SET DATABASE DEFAULT TABLE TYPE, 173
SET DATABASE EVENT LOG LEVEL, 174

SET DATABASE GC, 174

SET DATABASE SQL NAMES, 174

SET DATABASE SQL REFERENCES, 174

SET DATABASE SQL SIZE, 174

SET DATABASE TRANSACTION CONTROL, 32,
175

SET DATABASE UNIQUE NAME*, 175

SET DATA TYPE, 54

SET DEFAULT, 54

SET DOMAIN DEFAULT, 57

SET FILESBACKUP INCREMENT, 173, 177
SET FILES CACHE ROWS, 176

222

HyperS@L

SQL Index

SET FILES CACHE SIZE, 176

SET FILESDEFRAG, 176

SET FILESLOB SCALE, 178

SET FILESLOG, 176

SET FILESLOG SIZE, 177

SET FILESNIO, 177

SET FILES SCALE, 178

SET FILESWRITE DELAY, 177

set function specification, 91

SET IGNORECASE, 37

SET INITIAL SCHEMA*, 79

SET MAXROWS, 37

SET OPERATIONS, 110

SET PASSWORD, 79

SET PATH, 36

SET REFERENTIAL INTEGRITY, 175
SET ROLE, 35

SET SCHEMA, 36

SET SESSION AUTHORIZATION, 35
SET SESSION CHARACTERISTICS, 35
SET SESSION RESULT MEMORY ROWS, 37
SET TABLE read-write property, 51
SET TABLE SOURCE, 52

SET TABLE SOURCE HEADER, 53
SET TABLE SOURCE on-off, 53
SET TIME ZONE, 36

SET TRANSACTION, 32
SHUTDOWN, 171

SIGN function, 149

SIN function, 149

sort specification list, 103
SOUNDEX function, 145

SPACE function, 145

SPECIFIC, 45

SPECIFIC NAME, 134

SQL DATA access characteristic, 134
SQL parameter reference, 90

SQL procedure statement, 62

SQL routine body, 133

SQRT function, 150

START TRANSACTION, 32

string value expression, 94

SUBSTR function, 145

SUBSTRING function, 146
SYSTEM_USER function, 158

T

TAN function, 150
TIMESTAMPADD function, 153
TIMESTAMPDIFF function, 153
Time Zone, 16

TIMEZONE function, 150
TO_CHAR function, 154

TRANSACTION_CONTROL function, 159
transaction characteristics, 33

TRIGGERED SQL STATEMENT, 140
TRIGGER EXECUTION ORDER, 141
TRIM_ARRAY function, 155

TRIM function, 146

TRUNCATE function, 150

TRUNCATE TABLE, 113

U

UCASE function, 145
unicode escape elements, 86
UNION JOIN, 108
UNIQUE constraint, 50
UNIQUE predicate, 100
UPDATE, 114

USER function, 157

\Y

value expression, 94
value expression primary, 90
value specification, 91

W
WEEK function, 153

Y
Y EAR function, 153

223

HyperS@L

General Index

Symbols
_SYSTEM ROLE, 76

A

ABSfunction, 147

ACL, 194

ACOS function, 147

ADD COLUMN, 53

ADD CONSTRAINT, 55

ADD DOMAIN CONSTRAINT, 57
aggregate function, 102

ALL and ANY predicates, 99
ALTER COLUMN, 53

alter column nullability, 54

ALTER DOMAIN, 56

alter identity column, 54

ALTER routine, 60

ALTER SEQUENCE, 62

ALTER TABLE, 53

ALTER USER ... SET INITIAL SCHEMA, 79
ALTER USER ... SET PASSWORD, 78
ALTER view, 56

Ant, 213

ASCII function, 143

ASIN function, 147

ATANZ2 function, 147

ATAN function, 147
AUTHORIZATION IDENTIFIER, 76

B

backup, 168

BACKUP DATABASE, 172
BETWEEN predicate, 97
binary literal, 87

BINARY types, 13
BIT_LENGTH function, 145
BITAND function, 147

bit literal, 87

BITOR function, 147

BIT types, 14

BITXOR function, 148
boolean literal, 88
BOOLEAN types, 12
boolean value expression, 96

C

CARDINALITY function, 155
CASCADE or RESTRICT, 45
case expression, 92

CASE WHEN in routines, 123

CAST, 93

CEIL function, 147
CHANGE_AUTHORIZATION, 77
CHARACTER_LENGTH, 145
character literal, 86

CHARACTER types, 12

character value function, 95

CHECK constraint, 51
CHECKPOINT, 172

COALESCE expression, 92
COALESCE function, 155
COLLATE, 102

column definition, 48

column reference, 90

COMMENT, 45

COMMIT, 34

comparison predicate, 97

CONCAT function, 143
CONSTRAINT, 102
CONSTRAINT (table constraint), 49
CONSTRAINT name and characteristics, 49
contextually typed value specification, 90
CONVERT function, 155
COSfunction, 148

COT function, 148
CREATE_SCHEMA ROLE, 77
CREATE AGGREGATE FUNCTION, 129
CREATE ASSERTION, 65
CREATE CAST, 64

CREATE CHARACTER SET, 64
CREATE COLLATION, 64
CREATE DOMAIN, 56

CREATE FUNCTION, 131
CREATE INDEX, 63

CREATE PROCEDURE, 131
CREATE ROLE, 79

CREATE SCHEMA, 46

CREATE SEQUENCE, 61
CREATE TABLE, 47

CREATE TRANSLATION, 65
CREATE TRIGGER, 57, 139
CREATETYPE, 63

CREATE USER, 78

CREATE VIEW, 55

CROSS JOIN, 107

CRYPT _KEY, 173

CRYPT_KEY function, 157
CURDATE function, 151
CURRENT_CATALOG function, 158
CURRENT_DATE function, 151
CURRENT_ROLE function, 158
CURRENT_SCHEMA function, 158
CURRENT_TIME function, 151
CURRENT_TIMESTAMP function, 151

224

HyperS L General Index

CURRENT_USER function, 157 EXTRACT function, 150
CURTIME function, 151

F
D FLOOR function, 148
DATABASE_ISOLATION_LEVEL function, 159 FOREIGN KEY constraint, 50
DATABASE_TIMEZONE function, 150
DATABASE_VERSION function, 157 G
DATABASE function, 157 GRANTED BY, 80
DATEADD function, 154 GRANT privilege, 80
DATEDIFF function, 154 GRANT role, 81
datetime and interval literal, 88 GREATEST function, 156
Datetime Operations, 16 GROUPING OPERATIONS, 110
DATETIME types, 15
datetime value expression, 95 H
datetime value function, 95 HEXTORAW function, 143
DAYNAME function, 152 HOUR function, 152
DAYOFMONTH function, 152
DAY OFWEEK function, 152 |
DAY OFYEAR function, 152 identifier chain, 89
DBA ROLE, 76 identifier definition, 44, 75
DECODE function, 156 IDENTITY function, 157
DEFAULT clause, 49 IF EXISTS, 45
DEGREES function, 148 IFNULL function, 156
DELETE FROM, 112 IF STATEMENT, 124
DETERMINISTIC characteristic, 134 init script, 203
DIFFERENCE function, 143 IN predicate, 98
DISCONNECT, 35 INSERT function, 143
DROP ASSERTION, 65 INSERT INTO, 113
DROP CAST, 64 interval absolute value function, 96
DROP CHARACTER SET, 64 interval term, 95
DROP COLLATION, 65 INTERVAL types, 18
DROP COLUMN, 54 ISAUTOCOMMIT function, 158
DROP CONSTRAINT, 55 ISDISTINCT predicate, 101
DROP DEFAULT (table), 54 ISNULL predicate, 99
DROP DOMAIN, 57 ISOLATION_LEVEL function, 159
DROP DOMAIN CONSTRAINT, 57 ISREADONLYDATABASEFILES function, 158
DROP DOMAIN DEFAULT, 57 ISREADONLYDATABASE function, 158
DROPINDEX, 63 ISREADONLY SESSION function, 158
DROP ROLE, 79
DROP routine, 61 J
DROP SCHEMA, 47 JOIN USING, 108
DROP SEQUENCE, 62 JOIN with condition, 108
DROP TABLE, 55
DROP TRANSLATION, 65 L
DROP TRIGGER, 59, 141
DROP USER, 78 LANGUAGE, 133

LCASE function, 143
LEAST function, 156
LEFT function, 144
LENGTH function, 144

DROPVIEW, 56
DYNAMIC RESULT SETS, 135

E LIKE predicate, 98

EXISTS predicate, 100 LN function, 148

EXP function, 148 LOCALTIME function, 151
EXTERNAL NAME, 133 LOCALTIMESTAMP function, 151

225

HyperS@L

General Index

LOCATE function, 144
LOCK TABLE, 33
LOG10 function, 149
LOG function, 148
LTRIM function, 144

M

MATCH predicate, 100
MAX_CARDINALITY function, 155
memory use, 162

MERGE INTO, 115

MINUTE function, 152

MOD function, 149

MONTH function, 152
MONTHNAME function, 152

N

name resolution, 110
naming in joined table, 109
naming in select list, 110
NATURAL JOIN, 108
NEXT VALUE FOR, 93
NOW function, 153
NULLIF expression, 92
NULLIF function, 156
NULL INPUT, 134
numeric literal, 87
NUMERIC types, 10
numeric value expression, 94
numeric value function, 94
NVL function, 157

O

OCTET_LENGTH function, 145
OTHER type, 14

OUTER JOIN, 108
OVERLAPS predicate, 101
OVERLAY function, 146

P

PATH, 101

Pl function, 149

POSITION function, 146
POWER function, 149
PRIMARY KEY constraint, 50
PUBLIC ROLE, 76

Q

QUARTER function, 153

R
RADIANS function, 149

RAND function, 149
RAWTOHEX function, 144
REGEXP_MATCHES function, 144
RELEASE SAVEPOINT, 34
RENAME, 45

REPEAT function, 144

REPLACE function, 144
RETURN, 124

RETURNS, 132

REVERSE function, 144
REVOKE, 81

REVOKE ROLE, 81

RIGHT function, 145
ROLLBACK, 34

ROLLBACK TO SAVEPOINT, 34
ROUND function, 149

routine body, 132

routine invocation, 102

row value expression, 91

RTRIM function, 145

S

SA USER, 77

SAVEPOINT, 34

SAVEPOINT LEVEL, 135

schemaroutine, 59

SCRIPT, 173

search condition, 101

SECOND function, 153

SECONDS SINCE_MIDNIGHT function, 153
security, 5, 190, 194

SELECT : SINGLE ROW, 121
SESSION_ISOLATION_LEVEL function, 159
SESSION_TIMEZONE function, 150
SESSION_USER function, 158

SET AUTOCOMMIT, 32

SET CATALOG, 36

set clause in UPDATE and MERGE statements, 115
SET CONSTRAINTS, 33

SET DATABASE COLLATION, 173

SET DATABASE DEFAULT INITIAL SCHEMA, 79
SET DATABASE DEFAULT RESULT MEMORY
ROWS, 173

SET DATABASE DEFAULT TABLE TYPE, 173
SET DATABASE EVENT LOG LEVEL, 174

SET DATABASE GC, 174

SET DATABASE SQL NAMES, 174

SET DATABASE SQL REFERENCES, 174

SET DATABASE SQL SIZE, 174

SET DATABASE TRANSACTION CONTROL, 32,
175

SET DATABASE UNIQUE NAME*, 175

SET DATA TYPE, 54

226

HyperS@L

General Index

SET DEFAULT, 54

SET DOMAIN DEFAULT, 57

SET FILESBACKUP INCREMENT, 173, 177
SET FILES CACHE ROWS, 176

SET FILES CACHE SIZE, 176

SET FILESDEFRAG, 176

SET FILESLOB SCALE, 178

SET FILESLOG, 176

SET FILESLOG SIZE, 177

SET FILESNIO, 177

SET FILES SCALE, 178

SET FILESWRITE DELAY, 177

set function specification, 91

SET IGNORECASE, 37

SET INITIAL SCHEMA*, 79

SET MAXROWS, 37

SET OPERATIONS, 110

SET PASSWORD, 79

SET PATH, 36

SET REFERENTIAL INTEGRITY, 175
SET ROLE, 35

SET SCHEMA, 36

SET SESSION AUTHORIZATION, 35
SET SESSION CHARACTERISTICS, 35
SET SESSION RESULT MEMORY ROWS, 37
SET TABLE read-write property, 51
SET TABLE SOURCE, 52

SET TABLE SOURCE HEADER, 53
SET TABLE SOURCE on-off, 53

SET TIME ZONE, 36

SET TRANSACTION, 32
SHUTDOWN, 171

SIGN function, 149

SIN function, 149

sort specification list, 103

SOUNDEX function, 145

SPACE function, 145

SPECIFIC, 45

SPECIFIC NAME, 134

SQL DATA access characteristic, 134
SQL parameter reference, 90

SQL procedure statement, 62

SQL routine body, 133

SQRT function, 150

START TRANSACTION, 32

string value expression, 94

SUBSTR function, 145

SUBSTRING function, 146
SYSTEM_USER function, 158

T

TAN function, 150
TIMESTAMPADD function, 153

TIMESTAMPDIFF function, 153

Time Zone, 16

TIMEZONE function, 150

TO_CHAR function, 154
TRANSACTION_CONTROL function, 159
transaction characteristics, 33
TRIGGERED SQL STATEMENT, 140
TRIGGER EXECUTION ORDER, 141
TRIM_ARRAY function, 155

TRIM function, 146

TRUNCATE function, 150
TRUNCATE TABLE, 113

U

UCASE function, 145
unicode escape elements, 86
UNION JOIN, 108
UNIQUE constraint, 50
UNIQUE predicate, 100
UPDATE, 114

upgrading, 166

USER function, 157

\Y

value expression, 94
value expression primary, 90
value specification, 91

W
WEEK function, 153

Y
Y EAR function, 153

227

	HyperSQL User Guide
	Table of Contents
	Preface
	Available formats for this document

	Chapter 1. Running and Using HyperSQL
	The HSQLDB Jar
	Running Database Access Tools
	A HyperSQL Database
	In-Process Access to Database Catalogs
	Listener / Server Modes
	HyperSQL HSQL Server
	HyperSQL HTTP Server
	HyperSQL HTTP Servlet
	Connecting to a Database Server
	Security Considerations
	Using Multiple Databases

	Accessing the Data
	Closing the Database
	Creating a New Database

	Chapter 2. SQL Language
	Standards Support
	SQL Data and Tables
	Temporary Tables
	Persistent Tables
	Lob Data

	Basic Types and Operations
	Numeric Types
	Boolean Type
	Character String Types
	Binary String Types
	Bit String Types
	Storage and Handling of Java Objects
	Type Length, Precision and Scale

	Datetime types
	Interval Types
	Arrays
	Array Definition
	Array Reference
	Array Operations

	Indexes and Query Speed
	Query Processing and Optimisation

	Chapter 3. Sessions and Transactions
	Overview
	Session Attributes and Variables
	Session Attributes
	Session Variables
	Session Tables

	Transactions and Concurrency Control
	Two Phase Locking
	Two Phase Locking with Snapshot Isolation
	Lock Contention in 2PL
	MVCC
	Choosing the Transaction Model
	Schema and Database Change
	Simultaneous Access to Tables

	Session and Transaction Control Statements

	Chapter 4. Schemas and Database Objects
	Overview
	Schemas and Schema Objects
	Names and References
	Character Sets
	Collations
	Distinct Types
	Domains
	Number Sequences
	Tables
	Views
	Constraints
	Assertions
	Triggers
	Routines
	Indexes

	Statements for Schema Definition and Manipulation
	Common Elements and Statements
	Renaming Objects
	Commenting Objects
	Schema Creation
	Table Creation and Manipulation
	View Creation and Manipulation
	Domain Creation and Manipulation
	Trigger Creation
	Routine Creation
	Sequence Creation
	SQL Procedure Statement
	Other Schema Object Creation

	The Information Schema
	Predefined Character Sets, Collations and Domains
	Views in INFORMATION SCHEMA

	Chapter 5. Text Tables
	Overview
	The Implementation
	Definition of Tables
	Scope and Reassignment
	Null Values in Columns of Text Tables
	Configuration
	Disconnecting Text Tables

	Text File Usage
	Text File Global Properties
	Transactions

	Chapter 6. Access Control
	Overview
	Authorizations and Access Control
	Built-In Roles and Users
	Access Rights

	Statements for Authorization and Access Control

	Chapter 7. Data Access and Change
	Overview
	Cursors And Result Sets
	Columns and Rows
	Navigation
	Updatability
	Sensitivity
	Holdability
	Autocommit
	JDBC Overview
	JDBC Parameters
	JDBC Returned Values

	Syntax Elements
	Literals
	References, etc.
	Value Expression
	Predicates
	Other Syntax Elements

	Data Access Statements
	Table
	Query Specification
	Table Expression
	Table Primary
	Joined Table
	Selection
	Projection
	Computed Columns
	Naming
	Grouping Operations
	Aggregation
	Set Operations
	Query Expression
	Ordering
	Slicing

	Data Change Statements
	Delete Statement
	Truncate Statement
	Insert Statement
	Update Statement
	Merge Statement

	Chapter 8. SQL-Invoked Routines
	SQL Language Routines (PSM)
	Routine Statements
	Compound Statement
	Variables
	Handlers
	Assignment Statement
	Select Statement : Single Row
	Formal Parameters
	Iterated Statements
	Conditional Statements
	Return Statement
	Control Statements
	Routine Polymorphism
	Returning Data From Routines

	Java Language Routines (SQL/JRT)
	Polymorphism
	Java Language Procedures
	Legacy Support

	SQL Language Aggregate Functions
	Definition of Aggregate Functions
	SQL PSM Aggregate Functions
	Java Aggregate Functions

	Routine Definition
	Routine Characteristics

	Chapter 9. Triggers
	Overview
	Trigger Properties
	Trigger Event
	Granularity
	Trigger Action Time
	References to Rows
	Trigger Condition
	Trigger Action in SQL
	Trigger Action in Java

	Trigger Creation

	Chapter 10. Built In Functions
	Overview
	String and Binary String Functions
	Numeric Functions
	Date Time and Interval Functions
	Array Functions
	General Functions
	System Functions

	Chapter 11. System Management and Deployment Issues
	Mode of Operation and Tables
	Mode of Operation
	Tables
	Large Objects
	Deployment context
	Readonly Databases

	Memory and Disk Use
	Table Memory Allocation
	Result Set Memory Allocation
	Temporary Memory Use During Operations
	Data Cache Memory Allocation
	Object Pool Memory Allocation
	Lob Memory Usage
	Disk Space

	Managing Database Connections
	Tweaking the Mode of Operation
	Application Development and Testing
	Embedded Databases in Desktop Applications
	Embedded Databases in Server Applications
	Embedding a Database Listener
	Using HyperSQL Without Logging
	Server Databases

	Upgrading Databases
	Upgrading From Older Versions
	Manual Changes to the *.script File

	Backward Compatibility Issues
	Backing Up Database Catalogs
	Making Online Backups
	Making Offline Backups
	Examining Backups
	Restoring a Backup

	Encrypted Databases
	Creating and Accessing an Encrypted Database
	Speed Considerations
	Security Considerations

	Monitoring Database Operations
	Statement Level Monitoring
	Internal Event Monitoring
	Server Operation Monitoring

	Statements

	Chapter 12. Properties
	Connections
	Connection properties

	Database Properties in Connection URL and Properties

	Chapter 13. HyperSQL Network Listeners
	Listeners
	HyperSQL Server
	HyperSQL HTTP Server
	HyperSQL HTTP Servlet

	Server and Web Server Properties
	Starting a Server from your application
	Allowing a Connection to Open a Database
	TLS Encryption
	Requirements
	Encrypting your JDBC connection
	Client-Side
	Server-Side, aka Listener-Side

	JSSE
	Making a Private-key Keystore
	CA-Signed Cert
	Non-CA-Signed Cert

	Automatic Server or WebServer startup on UNIX

	Network Access Control

	Chapter 14. HyperSQL on UNIX
	Purpose
	Installation
	Setting up a HyperSQL Persistent Database Catalog and a HyperSQL Network Listener
	Accessing your Database
	Create additional Accounts
	Shutdown
	Running Hsqldb as a System Daemon
	Portability of hsqldb init script
	Init script Setup Procedure
	Troubleshooting the Init Script

	Upgrading

	Appendix A. Lists of Keywords
	List of SQL Standard Keywords
	List of SQL Keywords Disallowed as HyperSQL Identifiers

	Appendix B. Building HyperSQL Jars
	Purpose
	Building with Apache Ant
	Obtaining Ant
	Building Hsqldb with Ant
	Building for Older JDKs

	Building with IDE's
	Hsqldb CodeSwitcher
	Building documentation

	Appendix C. HyperSQL with OpenOffice.org
	HyperSQL with OpenOffice.org
	Using OpenOffice.org as a Database Tool
	Converting .odb files to use with HyperSQL Server

	Appendix D. HyperSQL File Links
	SQL Index
	General Index

