
A Novel Approach for Estimating Truck Factors
Guilherme Avelino⇤†, Leonardo Passos‡, Andre Hora⇤ and Marco Tulio Valente⇤

⇤ASERG Group, Department of Computer Science (DCC)
Federal University of Minas Gerais (UFMG), Brazil

Email: {gaa, mtov, hora}@dcc.ufmg.br
† Department of Computing (DC)

Federal University of Piaui (UFPI), Brazil
‡University of Waterloo, Canada
Email: lpassos@gsd.uwaterloo.ca

Abstract—Truck Factor (TF) is a metric proposed by the agile
community as a tool to identify concentration of knowledge
in software development environments. It states the minimal
number of developers that have to be hit by a truck (or quit)
before a project is incapacitated. In other words, TF helps
to measure how prepared is a project to deal with developer
turnover. Despite its clear relevance, few studies explore this
metric. Altogether there is no consensus about how to calculate it,
and no supporting evidence backing estimates for systems in the
wild. To mitigate both issues, we propose a novel (and automated)
approach for estimating TF-values, which we execute against
a corpus of 133 popular project in GitHub. We later survey
developers as a means to assess the reliability of our results.
Among others, we find that the majority of our target systems
(65%) have TF 2. Surveying developers from 67 target systems
provides confidence towards our estimates; in 84% of the valid
answers we collect, developers agree or partially agree that the
TF’s authors are the main authors of their systems; in 53%
we receive a positive or partially positive answer regarding our
estimated truck factors.

Index Terms—Code Authorship, GitHub, Truck Factor

I. INTRODUCTION

A system’s truck factor (TF) is defined as “the number of
people on your team that have to be hit by a truck (or quit)
before the project is in serious trouble” [1]. Systems with
a low truck factor spot strong dependencies towards specific
personnel, forming knowledge silos among developer teams.
If such knowledgeable personnel abandon the project, the sys-
tem’s lifecycle is seriously compromised, leading to delays in
launching new releases, and ultimately to the discontinuation
of the project as whole. To prevent such issues, comprehending
a system’s truck factor is a crucial mechanism.

Currently, the existing literature defines truck factor loosely.
For the most part, there is no formal definition of the concept,
nor means to estimate it. The main exception we are aware of
stems from the work of Zazworka et al. [2]. Their definition,
however, as well as follow-up works [3], [4], is not backed
by empirical evidence from real-world software systems.
Stated otherwise, TF-estimates, as calculated by Zazworka’s
approach, lack reliability evidence from systems in the wild.

Our work aims to improve the current state of affairs
by proposing a novel approach for estimating truck factors,
backed up by empirical evidence to support the estimates
we produce. In particular, we define an automated workflow

for TF-estimation for which we apply to a target corpus
comprising 133 systems in GitHub. In total, such systems
have over 373K files and 41 MLOC; their combined evolution
history sums to over 2 million commits. By surveying and
analyzing answers from 67 target systems, we evidence that in
84% of valid answers developers agree or partially agree that
the TF’s authors are the main authors of their systems; in 53%
we receive a positive or partially positive answer regarding our
estimated truck factors.

From our work, we claim the following contributions:
1) A novel approach for estimating a system’s truck factor,

as well as a publicly available supporting tool.1
2) An estimate of the truck factors of 133 GitHub systems.

All our data is publicly available for external validation,2
comprising the largest dataset of its kind.

3) Empirical evidence of the reliability of our truck factor
estimates, as a product of surveying the main contribu-
tors of our target systems. From the survey, we report
the practices that developers argue as most useful to
overcome a truck factor event.

We organize the remainder of the paper as follows. In
Section II we present a concrete example of truck factor con-
cerns in the early days of Python development. In Section III
we present our novel approach for truck factor estimation,
detailing all its constituent steps. Next, Section IV discusses
our validation methodology, followed by the truck factors of
our target systems in Section V. We proceed to present our
validation results from a survey with developers (Section VI),
further discussing results in Section VII. We argue about
possible threats in Section VIII. We present the related work
in Section IX, concluding the paper in Section X.

II. TRUCK FACTOR: AN EXAMPLE FROM THE EARLY
DAYS OF PYTHON

“What if you saw this posted tomorrow: Guido’s unexpected
death has come as a shock to us all. Disgruntled members
of the Tcl mob are suspected, but no smoking gun has been
found...”—Python’s mailing list discussion, 1994.3

1https://github.com/aserg-ufmg/Truck-Factor
2http://aserg.labsoft.dcc.ufmg.br/truckfactor
3http://legacy.python.org/search/hypermail/python-1994q2/1040.html

978-1-5090-1428-6/16/$31.00 ©2016 IEEE ICPC 2016, Austin, Texas 1

Years before the first discussions about truck factor in
eXtreme programming realms,4 this post illustrates the serious
threats of knowledge concentration in software development.
By posting the fictitious news in Python’s mailing list, the
author, an employee at the National Institute of Standards and
Technology/USA, wanted to foster the discussion of Python’s
fragility resulting from its strong dependence to its creator,
Guido van Rossum:
“I just returned from a meeting in which the major objection
to using Python was its dependence on Guido. They wanted
to know if Python would survive if Guido disappeared. This
is an important issue for businesses that may be considering
the use of Python in a product.”

Fortunately, Guido is alive. Moreover, Python no longer has
a truck factor of one. It has grown to be a large community of
developers and the fifth most popular programming language
in use.5 However, the message illustrates that Python was, at
least by some, considered a risky project. As knowledge was
not collective among its team members, but rather concentrated
in a single “hero”, in the absence of the latter, discontinuation
was a real threat, or at minimum, something that could cause
extreme delays. Projects with low truck factor, as Python was
in 1994, face high risk adoption, discouraging their use.

To facilitate decision making, it is crucial to metrify the
risks of project failure due to personnel lost. This information
serves not only business managers assessing early technology
adoption risks, but also maintainers and project managers
aiming to identify early knowledge silos among development
teams. Timely action plans can then be devised as a means to
prevent long-term failure. In that direction, reliable estimations
of a project’s truck factor is a must.

III. PROPOSED APPROACH

We calculate the truck factor of a target system by process-
ing its evolution history. We assume the latter to be managed
by a version control system, in addition to having access to a
local copy of the repository of the target subject.

Our approach comprises five major steps—see Figure 1.
Step 1 checkouts the latest point in the commit history, listing
all the source files therein. Step 2 handles possible aliases
among developers, i.e., cases where a single developer has
multiple Git users. Step 3 traces the history of each source
code file. From such traces, step 4 defines the authors in the
system, as well as their authored files. Authorship, in this
case, is not a strict notion. Stated otherwise, authorship is
not a matter of who creates a file. Rather, authorship is a
statement of who will be able to maintain a file from the latest
system snapshot onward. This may comprise the creator of the
file (original author), as well as other developers (co-authors)
who significantly contributed with changes to a file after its
creation. With the list of authors and their authored files, step
5 estimates the truck factor of the entire system.

4http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
5http://www.tiobe.com/index.php/tiobe index

(Repository: local copy)

List of files

(file path, mapped-dev-name, type)*
Change history

(file path)*

Authors' files
(author, file path+)*

(dev-name, email, mapped-dev-name)*
Aliases

List of ignorable source files
(file path)*

1. List Target
Source Files

2. Detect
Developer Aliases

3. Trace Change
History

4. Define
Authorship

5. Estimate Truck
Factor

Fig. 1. Proposed approach for truck factor calculation

We realize the given process to automatically estimate the
truck factor of projects whose evolution is managed by Git.
In the following, we detail the realization of each step.

A. Realization
Step 1: List Target Source Files. To obtain the list of target
files, we first switch to the master branch of the target
repository, checking out its latest commit. We then enumerate
the path of all source files of the given snapshot, excluding all
other file types (e.g., files representing documentation, images,
examples, etc), as well as the files listed in the ignorable source
file list, given as input. We also discard source files associated
with third-party libraries (i.e., files that are not developed in
the system under analysis). Our decision is conservative. An
existing survey from JavaOne’146 reports that nearly two-
thirds of polled senior IT professionals have Java applications
with half of their code coming from third-party sources. Thus,
if developers store third-party code in the system’s main
Git repository (e.g., as backup, to facilitate build, etc), and
third-party code is as large as the poll suggests, truck factor
estimates are likely to be significantly affected.

To exclude third-party code, one must be able to identify
it in the first place. As such, we employ Linguist,7 an
opensource tool from GitHub. Linguist is actively developed,
and it is constantly being updated by the GitHub community
to include new pattern matching rules to identify third-
party file names. Linguist’s original goal is to detect the
programming language of GitHub projects—as in our case,
this is sensitive to external code.

Step 2: Detect Developer Aliases. Each user in
Git is a pair (dev-name, email)—e.g., (“Bob Rob”,

6http://tinyurl.com/javaone14-survey
7https://github.com/github/linguist

2

“bob.rob@example.com”). It happens, however, that a
single developer may be associated with many Git user
accounts, leading to developer aliases. As such, this step
first extracts all dev-names and their associated emails.8
From the listing, we group users with the same email, but
possibly with different associated dev-names. Additionally,
we unify similar dev-names, but with different emails. In the
latter case, we employ the Levenshtein distance [5], with
a threshold of at most one. This means that we allow at
most one single-character insertion, deletion or substitution
to claim two different dev-names as referring to the same
developer. For example, if “Bob.Rob” and “Bob Rob” are
two dev-names, we consider them as the same developer, as
a single substitution is needed to make their names identical.
As a result of alias detection, step 2 outputs a mapping from
Git users to a single developer name (mapped-dev-name).

Step 3: Trace Change History. This step traces the evolution
history of each target file, taking as input the results of
the previous two steps. To perform the tracing, we collect
the system’s commits using the git log --find-renames

command. This command returns all commits of a repository
and identifies possible file renames. We process each commit,
extracting three pieces of information: (i) the path of the file
we are collecting the trace; (ii) the mapped-dev-name of the
developer performing the change; and (iii) the type of the
change—file addition, file modification, or file rename.

Step 4: Define Authorship. Given the change traces of each
file in the target snapshot of the project at hand, this step
defines the author list of each file. Different alternatives could
be used as a means for determining authorship—e.g., [6]–[11].
Among those, we chose the degree-of-authorship (DOA)
metric [10], [11], which we normalize after calculation. Given
a file f with path fp, the degree-of-authorship of a developer
d whose Git user has been mapped to md is given by:

DOA(md, fp) = 3.293 + 1.098⇥ FA(md, fp) + 0.164⇥
DL(md, fp)� 0.321⇥ ln(1 +AC (md, fp))

From the equation, DOA depends on three factors: (i) first
authorship (FA): if md originally created f , FA is 1; otherwise
it is 0; (ii) number of deliveries (DL): number of changes in f
made by md; and (iii) number of acceptances (AC): number
of changes in f made by any developer, except md.

The model assumes FA as the strongest predictor of au-
thorship. Recency information (DL) positively contributes
to authorship, but with less importance. In contrast, other
developers’ changes (AC) decrease one’s DOA, although at
a slower pace. The weights we use in the DOA model stem
from empirical experiments performed elsewhere [11].

DOA has three major advantages in comparison to other
approaches: (i) assuming the weights of the model to be
general, DOA does not require a training set; (ii) DOA does
not require monitoring editing activities as developers maintain
different files (e.g., as in [9]); (iii) instead of considering all

8For instance, by issuing git log | grep "Author:" | sed

's/ˆ.

*

:\s\+//;s/\s\+</;/;s/>$//'| sort | uniq

Algorithm 1: TRUCK FACTOR ALGORITHM.
Input: List of authors’ files A
Output: System truck factor

1 begin
2 F getSystemFiles(A);
3 tf 0;
4 while A 6= ; do
5 coverage getCoverage(F , A);
6 if coverage < 0.5 then
7 break;
8 end
9 A removeTopAuthor (A);

10 tf tf + 1;
11 end
12 return tf ;
13 end

developers changing a file as its authors (e.g., as in [2]), DOA
weights contributions differently, accounting for both changes
of a developer in a file (increases DOA), as well as the changes
performed by others (decreases DOA).

Once we know the DOA-values of all files changed by pre-
viously mapped developers, we proceed to normalize results.
A normalized DOA-value ranges from 0 to 1. We grant 1 to the
developer with the highest absolute DOA among all developers
that worked on f ; altogether, we consider a developer as an
author of a file if its resulting normalized DOA is greater than
a threshold k and its absolute DOA is not lower than a value
m. Currently, k and m stands as configurable parameters in
our approach. As we show in Section IV-B, k = 0.75 and
m = 3.293 seem to provide good results. As a result of this
step, we output a list of associations from authors (mapped-
dev-names) to their related authored files.

Step 5: Estimate Truck Factor. Taking a list A of authors
(mapped-devs) and their associated authored files (one or more
file paths), this step estimates the system’s truck factor. Our
estimation relies on a coverage assumption: a system will face
serious delays or will be likely discontinued if its current
set of authors covers less than 50% of the current set of
files in the system. Following such assumption, our truck
factor estimation algorithm implements a greedy heuristic—
see Algorithm 1. Starting with a truck factor of zero, we iterate
over the authors’ file list A (lines 4–11), verifying at each
iteration whether the current authors’ coverage is below 0.5
(line 6). If so, we stop the iteration—maintenance is likely
to be hampered; otherwise, we remove the top author from
A (line 9), increasing truck factor by one (line 10). The top
author in a given iteration is the mapped-dev authoring the
highest number of files in A.9 Whenever A shrinks, another
iteration follows, provided A is not empty. This process
continues until A becomes empty or coverage is less than 0.5.

IV. VALIDATION METHODOLOGY

To validate our approach, we select 133 systems from
GitHub. For each target system, we estimate its truck factor.

9This is obtained by finding the entry ei = (ai, filepath-listi) 2 A s.t.
@ ej = (aj , filepath-listj) 2 A ^ ej 6= ei ^ |filepath-listj | > |filepath-listi|.
If there exist more than one top author, we just take the first one we find.

3

This section details our corpus selection and how we setup
our approach for estimating truck factors for our chosen
subjects. We also discuss how we survey developers as a
means to validate our estimates and get further insights.

A. Selection of Target Subjects
To select a target set of subjects, we follow a procedure

similar to other studies investigating GitHub [12]–[15]. First,
we query the programming languages with the largest number
of repositories in GitHub. We find six main languages (L):
JavaScript, Python, Ruby, C/C++, Java, and PHP. We then
select the 100-top most popular repositories within each target
language. Popularity, in this case, is given by the number
of times a repository has been starred by GitHub users.
Considering only the most popular projects in a given language
(S`), we remove the systems in the first quartile (Q1) of the
distribution of three metrics, namely number of developers
(nd), number of commits (nc), and number of files (nf). After
filtering out subjects in Q1, we compute the intersection of the
remaining sets. From the previous steps, we get an initial set
of prospective subjects T 0. Formally,

T 0 =
[

`2L

T 0
nd
(`) \ T 0

nc
(`) \ T 0

nf
(`)

where
T 0
nd
(`) = S` �Q1(nd(S`))), T 0

nc
(`) = S` �Q1(nc(S`))),

T 0
nf
(`) = S` �Q1(nf (S`)))

From T 0, we determine a new subset T 1 including only the
systems whose repositories stem from a correct migration to
GitHub. Specifically, we remove systems with more than 50%
of their files added in less than 20 commits—less than 10%
of the minimal number of commits we initially considered.
This evidences that a large portion of a system was developed
using another version control platform and the migration to
GitHub could not preserve the original version history. From
the resulting set of prospective subjects (|T 1| = 135), we
manually inspect the documentation in each repository to
identify and eliminate duplicate subjects. Our inspection shows
raspberrypi/linux and django/django-old as duplicate cases. The
first, despite not being a fork, is very similar to torvalds/linux;
in fact, it is a clone of the Linux kernel, with extensions
supporting RaspberryPi-based boards. The second is an old
version of a repository already in T 1.

After excluding raspberrypi/linux and django/django-old, we are
left with 133 subjects (T 2), which represent the most important
systems per language in GitHub, implemented by teams with a
considerable number of active developers and with a consider-
able number of files. Table I summarizes the characteristics of
the repositories of our chosen subjects. Ruby is the language
with more systems, 33 in total. The programming language
with less systems is PHP, with 17 projects. Accounting all
our chosen subjects, their latest snapshots accumulate over
373K files and 41 MLOC; their combined evolution history
sums to over 2 million commits. Our targets also have a
large community of contributors, accumulating to over 60K
developers. Figures 2(c)–2(d) depict each distribution.

TABLE I
TARGET REPOSITORIES

Language Repos Devs Commits Files LOC

JavaScript 22 5,740 108,080 24,688 3,661,722
Python 22 8,627 276,174 35,315 2,237,930
Ruby 33 19,960 307,603 33,556 2,612,503
C/C++ 18 21,039 847,867 107,464 19,915,316
Java 21 4,499 418,003 140,871 10,672,918
PHP 17 3,329 125,626 31,221 2,215,972
Total 133 63,194 2,083,353 373,115 41,316,361

20
50

10
0

20
0

50
0

20
00

50
00

20
00

0
D

ev
el

op
er

s
(lo

g)

(a) Developers

50
0

20
00

50
00

20
00

0
10

00
00

50
00

00
C

om
m

its
 (l

og
)

(b) Commits

10
0

20
0

50
0

20
00

50
00

20
00

0
Fi

le
s

(lo
g)

(c) Files

10
00

10
00

0
10

00
00

10
00

00
0

10
00

00
00

Li
ne

s
of

 C
od

e
(lo

g)

(d) LOC

Fig. 2. Target subjects

B. Setting up Inputs
Our approach requires as input a listing of ignorable source

files of a system, in addition to a tweak of the DOA thresholds
(k and m). Next, we detail how we set both inputs.

List of Ignorable Source Files. To create the list of ignorable
files, we manually inspect the first two top-level directories
in each target repository, seeking to find third-party libraries
undetected by Linguist. Also, as Linguist is architecture and
system agnostic, we look for plugin-related code in systems
with a plugin-based architecture. As with third-party code,
plugins may highly influence a system’s truck factor. For
instance, in the Linux kernel, driver plugins are the most
common feature type [16]; since driver features generally de-
note optional features targeting end-user selection, the kernel
itself is independent from them. In the case of torvalds/linux,
we exclude all driver-related code, which is, for the most part,
inside the driver folder of the Linux kernel source code tree.10

In addition to the Linux kernel repository, two other systems
have a large amount of plugin-related code: Homebrew/home-
brew and caskroom/homebrew-cask. Homebrew is a package
manager in Mac OS for handling the installation of different
software systems. Its implementation allows contributors to
push new formulas (automated installation recipes) to the
system’s remote repository, leading to thousands of formulas.
As an extensible software system, Homebrew has one of
the largest base of developers on GitHub (more than 5K
developers, as of July 14th, 2015). Considering all its formu-

10Specifically, we identify all driver-related code by executing a specialized
script from G. Kroah-Hartman, one of the main developers of the Linux kernel.
Available at https://github.com/gregkh/kernel-history.

4

las, Homebrew’s TF, as computed by our heuristic, is 250.
After excluding the files in folder Library/Formula, however,
HomeBrew’s truck factor reduces to 2. This clearly evidences
the sensitivity of TF-values in the face of external code. As
for caskroom/homebrew-cask, we ignore its Casks directory.

In total, our list of ignorable files excludes 10,450 entries.

Setting DOA Thresholds. To find suitable thresholds, we man-
ually inspect a random sample of 120 files stemming from
the six top-most popular systems in our target corpus (T 2),
one for each target language we account for. This results
in files from mbostock/d3 (JavaScript), django/django (Python),
rails/rails (Ruby), torvalds/linux (C/C++), elasticsearch/elasticsearch
(Java), and composer/composer (PHP). We then compute the
normalized DOA-values for each developer contributing at
least one commit changing a file in our sample. Initially,
we note that normalized DOA-values below 0.50 lead to
doubtful authorships. We measure doubtfulness by contrasting
our authorship results with ranks we extract from git-blame

reports. The latter contains the last developer who modified
each line in a file [17]; by ranking developers according to
the number of their modified lines, authors are likely to be
those with higher ranks. Fixing 3.293 (which corresponds
to the constant term in DOA’s linear equation) as minimal
absolute DOA and resetting the threshold for normalized
DOA to 0.75 better aligns results. Specifically, 64% of the
authors selected using those thresholds are classified as the
top-1 ranked developer from git-blame; in 91% of the cases,
they are among the top-3 in the ranking list of git-blame,
whereas 7% lie between the 4th and 8th positions. In only
three cases (2%), the authors do not pair with any developer
from git-blame rankings.

C. Survey Design and Application

After collecting the truck factors of our chosen targets,
one of the authors of this paper set to elaborate survey
questions seeking to evidence the reliability of our results, as
well as an instrument to get further insights. Following best
practices in survey design [18], we assure clarity, consistency,
and suitability of our questions by running a feedback loop
between the survey author and two other authors of this paper,
until reaching a consensus among all three. We also perform
a pilot study to identify early problems, such as whether our
language correctly captures the intent of our questions. From
the pilot study, we note few, but important communication
issues, which we fix accordingly.

Survey Questions. After our pilot study, we phrase our
questions as follows.

Question 1. Do developers agree that top-ranked authors are
the main developers of their projects?

This question seeks to assess the accuracy of our top
authorship results. The top-ranked authors of a system are
those we remove during the iteration step of our greedy-
heuristic (recall Algorithm 1), i.e., those responding for
a system’s truck factor. Note that we use the term main

developers, not authors. Our pilot study shows that developers
tend to consider the creator of a file as its main author.

Question 2. Do developers agree that their project will be in
trouble if they loose the developers responding for its truck
factor?

This question aims to validate our TF estimates. If we receive
a positive feedback in this question, we can conclude that
code authorship is an effective proxy.

Question 3. What are the development practices and char-
acteristics that can attenuate the loss of the developers
responsible for a system’s truck factor?

Our intention here is to reveal the instruments developers see
as most effective to circumvent the loss of important
developers—e.g., by devising better documentation,
codification rules, modular design, etc.

Survey Application. Before contacting developers and
applying our survey, we aim at calling their attention
by promoting our work in popular programming forums
(e.g., Hacker News) and publishing a preprint at PeerJ
(https://peerj.com/preprints/1233).

After promotion, we apply the survey by opening GitHub
issues in all target projects allowing such a feature (114 out of
133). The choice for issues is twofold: (i) issues foster public
discussions among project developers; (ii) issues document all
discussions, making them available for later reading. Potential
readers include new developers, end-users interested on the
target systems, researchers, etc.

Our posting period ranges from July 31th to August 11th,
2015. In the following two weeks, we set to collect answers,
respected the deadline of August 25th, 2015. In total, we
collect answers from developers of 67 systems. In 37 of those,
there is a single answer from a single developer. However,
often, the issues include discussions among different project
members. For example, in saltstack/salt, we have comments
from six developers. In total, we accumulate 170 discussion
messages from 106 respondents; 96 messages stem (57%)
from the top-10 contributors of the 67 participating projects.
Figure 3 characterizes all participants according to their level
of project contribution. We get the list of top contributors by
consulting the project’s statistics as provided by GitHub. To
exclude unreliable answers, we discard issues that do not have
a single answer from a top-10 project contributor—five issues
in total. Thus, we are left with 62 participating systems, as
we have one issue per system. Among the issues that we do
not exclude from analysis, we find 96 different respondents.
Some messages are quite detailed. For instance, a message in
an issue in elastic/elasticsearch contains 1,670 words. In fact,
according to the respondent, it triggered interesting internal
discussions.

Survey Analysis. To compile the survey results, we analyze the
discussions of our opened issues. For the first two questions,
we classify answers according to four levels: agree, partially
agree, disagree, or unclear. The fourth level refers to cases

5

0

5

10

15

20

25

To
p−

1

To
p−

2

To
p−

3

To
p−

4

To
p−

5

To
p−

6

To
p−

7

To
p−

8

To
p−

9

To
p−

10

N
on
−t

op

Respondents

N
um

be
r o

f R
es

po
nd

en
ts

Fig. 3. Respondents profile

where we cannot derive a clear position from an answer. Two
authors of this paper independently classified all answers, later
crosschecking their results.

As for our third question, we categorize answers to iden-
tify common practices and characteristics. Our categorization
closely follows grounded theory open-coding principles [19].

V. TRUCK FACTOR ESTIMATES

A. Preceding Output

Target List of Source Files (Step 1). Using our input list of
ignorable files (see Section IV), as well as the automated
exclusion by Linguist, we estimate the truck factor of 243,660
files (33 MLOC)—34% less files than the original set in our
subjects. The most frequent kind of files we remove concern
JavaScript (5,125), PHP (3,099), and C/C++ (2,049) source
files. Decreasing the number of target files decreases the target
number of developers (63,193) and commits (1,262,130), a
reduction of 28% and 39% w.r.t the original state of our target
repositories.

Authorship List (Step 4). By applying the normalized DOA
to define the list of authors in each target system, as well as
their authoring files, step 4 reveals the proportion of developers
ranked as authors—see Figure 4. For most systems, such
proportion is relatively small; the first, second, and third
quartiles are 16%, 23%, and 36%, respectively. Interestingly,
systems with a high proportion of authors usually have sup-
port of private organizations. Examples include four of the
top-10 systems with the highest author ratio among devel-
opers, such as v8/v8 (75%), JetBrains/intellij-community (73%),
WordPress/WordPress (67%), and Facebook/osquery (62%). We
also detect two language interpreters among the top-10 sys-
tems: ruby/ruby (72%) and php/php-src (59%). At the other
extreme, there are systems with a very low author ratio—
e.g., sstephenson/sprockets (3%) and jashkenas/backbone (2%).
Backbone is also an example, with only six authors amongst
its 248 developers. These six authors monopolize 67% of
commits. A similar situation occurs with sprockets (a Ruby
library for compiling and serving web assets): although 61
developers associate to commits in the evolution history,
95% of commits come from two authors only; moreover, 27

0 20 40 60 80 100

Ratio (%)

Fig. 4. Proportion of developers ranked as authors

0 10 20 30 40 50 60

Truck Factor

Fig. 5. Systems Truck Factor

TABLE II
SYSTEMS WITH HIGHEST TRUCK FACTORS

System TF
torvalds/linux 57
fzaninotto/Faker 23
android/platform frameworks base 19
moment/moment 19
php/php-src 18
odoo/odoo 14
fog/fog 12
git/git 12
webscalesql/webscalesql-5.6 11
v8/v8 11
Seldaek/monolog 11
saltstack/salt 11
JetBrains/intellij-community 9
rails/rails 9
puppetlabs/puppet 9

developers respond for a single commit modifying a single
line of code.

B. Results

Figure 5 presents the distribution of the truck factor amongst
our subjects. The first, second, and third quartiles are 1, 2, and
4, respectively. Most systems have a small truck factor: 45
systems (34%) have TF = 1 (e.g., mbostock/d3 and less/less.js);
in 42 systems (31%), TF = 2 including well-known systems
such as clojure/clojure, cucumber/ cucumber, ashkenas/ backbone
and elasticsearch/elasticsearch. Systems with high TF-values,
however, do exist. Table II presents the top-15 (boxplot out-
liers)11 systems with the highest truck factors. Among those,
torvalds/linux has TF = 57, followed by fzaninotto/Faker (TF = 23)
and android/platform frameworks base (TF = 19). Other well-
known systems include php/php-src (TF = 18), git/git (TF = 12),
v8/v8 (TF = 11), and rails/rails (TF = 9).

11In the boxplot, seven outliers have overlapping values, causing them to
be plotted above an existing datapoint.

6

VI. TF VALIDATION: SURVEYING DEVELOPERS

We present our survey results from our filtered set of issues
and their underlying messages—we only account issues
having at least one message from a top-10 project contributor.
In total, the answers we analyze stem from 106 respondents,
of which 84 are top-10 contributors. The final number of
participating systems is 62.

Question 1. Do developers agree that the top-ranked authors
are the main developers of their projects?

TABLE III
ANSWERS FOR SURVEY QUESTION 1

Agree Partially Disagree Unclear
31 (50%) 18 (29%) 9 (15%) 4 (6%)

Table III summarizes the answers for our first question.
Respondents of 31 systems (50%) fully agree with our list of
main developers. Example agreements:

“Yes, that’s me.”—developer from bjorn/tiled.

“I think that it is a reasonable statement to make. They have
contributed by far the most and paved the way for the rest of
us.”—developer from composer/composer.

Developers of 18 systems (29%) partially agree with our
list of top-ranked authors. The main disagreement stems from
the historical balance between older and newer developers:

“Yes and no, historically yes, currently no, a team has
been picking up the activity, your analysis seems to be
biased on capital (existing files) rather than activity (current
commits).”—developer from kivy/kivy.

“I would have added @DayS and @WonderCsabo as main
developers.”—developer from excilys/androidannotations

The latter answer illustrates a situation where we report
two top-authors in a target project; the respondent, although
agreeing with our suggestion, recommend adding two other
developers. The latter two have many recent commits; in
contrast, one of the top authors we recommend is no longer
active, strengthening the developer’s argument. The two top-
authors from our degree-of-authorship measures cover 41%
and 26% of files, respectively. The two suggested by our
respondent account for 9% and 17% (see Figure 6). However,
we do note a gradual decrease in the number of authored files
by the top developer we suggest, while an increasing trend for
one of the two that our respondent recommends.

Developers of nine systems (15%) disagree with our
list. Six developers indicate that other contributors are now
responsible for their projects. Example disagreements include:

“No. TJ has been away from Jade for quite some
time now. @ForbesLindesay is considered the main
maintainer/developer of Jade.”—developer from jadejs/jade.

0

25

50

75

m
ar
−1

3

ab
r−

13

m
ai
−1

3

ju
n−

13

ju
l−

13

ag
o−

13

se
t−

13

ou
t−

13

no
v−

13

de
z−

13

ja
n−

14

fe
v−

14

m
ar
−1

4

ab
r−

14

m
ai
−1

4

ju
n−

14

ju
l−

14

ag
o−

14

se
t−

14

ou
t−

14

no
v−

14

de
z−

14

ja
n−

15

fe
v−

15

Releases

Au
th

or
s

(%
)

top1 top2 top3 top4

Fig. 6. Percentage of files per author in excilys/androidannotations (top-4
authors)

“No, Burns hasn’t been contributing for a while now.
I’ve taken over what he was doing.”—developer from
backup/backup.

Other disagreements are due to auto-generated code. Finally, a
single developer has a negative attitude towards the question,
providing us with no insights.

Question 2. Do developers agree that their projects will be in
trouble if they loose the truck factor authors?

Table IV summarizes results concerning this question.

TABLE IV
ANSWERS FOR SURVEY QUESTION 2

Agree Partially Disagree Unclear
24 (39%) 6 (10%) 27 (43%) 5 (8%)

Developers of 24 systems (39%) agree with our truck
factor results. Most positive answers are concise, usually
a straight “yes” (14 answers). We consider as agreement
answers that acknowledge a serious impact to the project if
the given developers are to be absent, such as in:

“If both of us left, the project would be kind of
unmaintained.”—developer from SFTtech/openage.

“Initially, yes. However, given the size of the Grunt community,
I believe a new maintainer could be found.”—developer from
gruntjs/grunt.

“If Wladimir or Pieter left, it would be a serious loss, but
not fatal I think.”—developer from bitcoin/bitcoin.

Among the positive answers, we find a system that in
fact “lost” its single truck factor author—pockethub/PocketHub.
The project implements a GitHub Android client, originally
released as part of the GitHub platform. A GitHub employee
is identified as the system’s single author, accounting for 78%
of all source files. However, as stated in the repository home
page, GitHub no longer maintains the app. The repository is al-
most inactive, receiving very few commits per month. The last
release dates from February 2014 (still as a GitHub project).
One developer reports that low community involvement is the

7

reason for the project’s trouble, as there are only three people
working on the project and this is not their full time job.

Six answers are partial agreements. Examples:

“Somewhat agree. A loss in one area would mean a temporary
dip in maintenance of that area until someone else stepped
in.”—developer from saltstack/salt.

“Not necessarily, there’s a long list of both small and
significant contributors that had to understand a large piece
of the code base to implement a feature or fix.”—developer
from justinfrench/formtastic.

Developers of 27 systems disagree with our TF-values. Six
developers (22%) have negative answers to our question, but
do not provide further details; 21 developers (78%) justify
their answer stating that others could take over the project:

“Backup shouldn’t be in trouble. . . It’s an open source project,
anyone can start contributing if they want to.”—developer
from backup/backup.

We find two systems surviving the “lost” of the truck factor
authors in our list:

“Coda was the author of the majority of the code. He left the
project around a year ago. Some issues were going a long
time without resolution, at which point I offered to maintain
the project.”—developer from dropwizard/metrics.

“Your questions are timely, since Roland [the main author]
has already left the project . . . and we are not in trouble.”—
developer from caskroom/homebrew-cask.

In the case of dropwizard/metrics, it has been partially affected
by the lost of its single truck factor author, as another
developer was able to take over the project. As for caskroom/ho-
mebrew-cask, the respondent highlights two factors helping
their transition after loosing their single truck factor author:
(a) comprehensive documentation; (b) developers ready to
transmit the rules and requirements to newcomers.

Question 3. What are the development practices that can
attenuate the loss of top-ranked authors?

Table V summarizes answers. Documentation is the practice
with the largest number of mentions across answers (36 an-
swers), followed by the existence of an active community (15
answers), automatic tests (10 answers), and code legibility (10
answers). We group practices with a single answer under the
miscellaneous category—e.g., implementation in an specific
programming language, periodic team chats, code reviews,
support to classical algorithms, etc. In addition, we received
seven “yes/no” answers, which are non-sensical given the
nature of the question (not shown).

Although not development practices, having active
communities and paid developers appear frequently among
the answers we analyze. Both reasons appear as justifications
for not concerning with top-authors lost:

“I’d say that the vibrant community is the reason for it.”—

TABLE V
PRACTICES TO ATTENUATE THE TRUCK FACTOR

Practice Answers
Documentation 36
Active community 15
Automatic tests 10
Code legibility 10
Code comments 7
Founding/Paid developers 5
Popularity 5
Architecture and design 4
Shared repository permissions 4
Other implementations 2
Knowledge sharing practices 2
Open source license 2
Miscellaneous 9

developer from rails/rails.

“We have a handful of other maintainers and a large body
of contributors who are interested in Homebrew’s future.”—
developer from Homebrew/homebrew.

“The people you listed are paid to work on the project,
along with a number of others. So if the four of us took off,
the project would hire some more people”—developer from
ipython/ipython.

VII. DISCUSSION

In this section, we discuss the lessons we learn in our study.
We also lay out directions for future research on truck factor
measurements and applications.

A. DOA Results
The results produced by the DOA model seem accurate

when applied to a large collection of systems. For the first
survey question, the developers of 49 systems (84% of the
valid answers) agree or partially agree with our results. Despite
that, some developers report that the model gives high empha-
sis on first authorship (FA) events. In the same question of our
survey, six developers disagree with our results exactly due to
this resilience of the DOA model in transferring authorship
from the first author to another one. This applies in systems
where a single developer creates the bulk of the code, but
later switches role (e.g., project leader or mentor), becoming
less active in development activities. In fact, some developers
suggest that DOA computation should consider only the most
recent development history, e.g., commits performed in the last
year. One developer from clojure/clojure explicitly declares that
“if the code is old enough, even the original author will have
to approach it with essentially fresh eyes.”

B. Challenges on Computing Truck Factors
We receive answers for 67 (out of 114) systems. This

high response ratio (59%) is certainly a consequence of the
importance that developers give to the truck factor concept. By
analyzing the answers, we see that developers generally rec-
ognize the impact that the truck factor may have in the public

8

reputation of their systems. However, it is worth noting that
estimating this concept automatically has many challenges. A
few developers refused to answer our question, stating for ex-
ample that “it is an existential, speculative question that I will
not attempt to answer” (developer from mbostock/d3). A second
developer states that “the truck factor is mostly concerned
with institutional memory getting lost. No automatic system
can account for this lost, unless all project communication is
public.” (developer from libgdx/libgdx). Our survey also reveals
that developers usually consider documentation as the best
practice to overcome a truck factor episode.

Despite the challenges in computing truck factors au-
tomatically, our code-authorship-coverage heuristic presents
compelling results. We receive positive or partially positive
answers for 30 systems (53% of the valid answers). Even
when developers do not agree with our estimation, it is
not completely safe to discard a possible damage to the
system. For example, six developers state that truck factor
is not a concern in open source systems, since it is always
possible to recruit new core developers from their large base
of contributors. In fact, we observe a successful transition of
core developers in at least two systems. In contrast, we cannot
discard the risks inherent to such transitions, specially when
they should take place due to a sudden and unplanned truck-
factor-like episode.

Developers also point two concrete problems in our heuristic
for computing truck factors. First, it considers all files in a
system as equally important in terms of the features they
implement. However, not all requirements and features are
equally critical to a system survivability. We address this
problem by discarding some files from our analysis, in the
cases they lead to highly skewed results (e.g., recipes from
Homebrew/homebrew). However, in other systems this partition
between core and non-core files is less clear (at least, to non-
experts). Second, the heuristic does not account the last time
a file is changed. In the survey, some developers claim that
losing the author of a very stable file is not a concern (since
they probably will not depend again on this author to maintain
the file). When such files are common in a system, the heuristic
can be adapted to just consider recently changed files.

VIII. THREATS TO VALIDITY

Construct Validity. We compute the degree-of-authorship using
weights derived for other systems [10], [11]. Therefore, we
cannot guarantee these weights as the most accurate ones for
assessing authorship on GitHub projects. However, the authors
of the DOA formula show that the proposed weights are robust
enough to be used with other systems, without computing
a new regression. Still, we mitigate this threat by initially
inspecting the DOA results for 162 pairs of authors and files.
Contrasting results with those from git-blame suggest DOA-
values to be reliable.

The presence of non-source code files, third party libraries,
and developers aliases can also impact our results. To address
these threats our tool performs file cleaning and alias handling
steps before calculating truck factor estimates.

Internal Validity. Our approach computes the authors of a
file by considering all the changes performed in the target
file. Therefore, our approach is sensitive to loss of part of
the development history as result of a erroneous migration to
GitHub. We mitigate this threat using a heuristic to detect
systems with clear evidence that most of its development
history was performed using another version control platform
and that this history could not be correctly migrated to GitHub.
Moreover, the full development history of a file can be lost
in case of renaming operations, copy or file split (e.g., as
result of a refactoring operation like extract class [20]). We
address the former problem using Git facilities (e.g., git log

--find-renames). However, we acknowledge the need for
further empirical investigation to assess the true impact of the
other cases.

External Validity. We carefully select a large number of real-
world systems coming from six programming languages to val-
idate our approach. Despite these observations, our findings—
as usual in empirical software engineering—cannot be directly
generalized to other systems, mainly closed-source ones. Many
others aspects of the development environment, like contribu-
tion policies, automatic refactoring, and development process
may impact the truck factor results and it is not the goal of
this study to address all of them.

Finally, to assess the impact of the aforementioned threats in
our results, we conduct a survey with developers of the systems
under analysis in this paper, as reported in Section VI.

IX. RELATED WORK

Although widely discussed among eXtreme Programming
(XP) practitioners, there are few studies providing and vali-
dating truck factor measures for a large number of systems.
Zazworka et al. [2] are probably the first to propose a formal
definition for TF, specifically to assess a project’s conformance
to XP practices. For the purpose of simplicity, their definition
assumes that all developers who edit a file have knowledge
about it. Furthermore, they only compute the TF for five
small projects written by students. Ricca et al. [3], [4] use
Zazworka’s definition to compute truck factors for opensource
projects. In their first work, they propose the use of the TF
algorithm as strategy to identify “heroes” in software devel-
opment environments. In their second work, the authors point
for scalability limitations in Zazworka’s algorithm, which only
scales to small projects (30 developers). In our study, 122
out of 133 systems have more than 30 developers (maximum
is torvalds/linux, with thousands of developers among non-
driver files). Hannebauer and Gruhn [21] further explore the
scalability problems of Zazworka’s definition, showing that
its implementation is NP-hard. Cosentino et al. [22] propose
a tool to calculate TF for Git-based repositories. They use a
hierarchical strategy, aggregating file-level authorship results
to modules and, in a second step, aggregating module-level
results into systems. They evaluate their tool with four systems
developed by members of their research group.

Overall, our study differs from the previous ones in three
main points: we use the DOA model to identify the main

9

authors of a file; we evaluate our approach in a large dataset
composed of real-world software from six programming lan-
guages; we validate our results with expert developers.

X. CONCLUSION

This paper proposes and evaluates a heuristic-based ap-
proach to estimate a system’s truck factor, a concept to assess
knowledge concentration among team members. We show that
87 systems (65%) have TF 2. We validate our results with
the developers of 67 systems. In 84% of the valid answers,
respondents agree or partially agree that the TF’s authors
are the main authors of their systems; in 53% we receive a
positive or partially positive answer regarding the estimated
truck factors.

According to the surveyed developers, documentation is the
most effective development practice to overcome a truck factor
event, followed by the existence of an active community and
automatic tests. We also comment on the main lessons we
learn from the developers’ answers to our questions.

As future work, we plan to introduce and evaluate the
improvements suggested by the surveyed developers in our
heuristic to compute truck factors. As an example, we can
consider only recently changed files in the estimation of TFs
and compute authorship at line level. Finally, we intend to
perform a second study, considering industrial and closed
systems, and compare the truck factor results with the ones
we report in this paper for opensource systems.

ACKNOWLEDGMENTS

We thank all the respondents of our survey. This study is
supported by grants from FAPEMIG, CNPq, and UFPI.

REFERENCES

[1] L. Williams and R. Kessler, Pair Programming Illuminated. Addison
Wesley, 2003.

[2] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and K. Schnei-
der, “Are developers complying with the process: an xp study,” in
4th International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2010, pp. 14:1–14:10.

[3] F. Ricca and A. Marchetto, “Are heroes common in FLOSS projects?”
in 4th International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2010, pp. 1–4.

[4] F. Ricca, A. Marchetto, and M. Torchiano, “On the difficulty of comput-
ing the truck factor,” in Product-Focused Software Process Improvement.
Springer, 2011, vol. 6759, pp. 337–351.

[5] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[6] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Pro-
ceedings of the 28th International Conference on Software Engineering
(ICSE), 2006, pp. 361–370.

[7] S. Minto and G. C. Murphy, “Recommending emergent teams,” in 4th
Workshop on Mining Software Repositories (MSR), 2007, pp. 5–5.

[8] D. Schuler and T. Zimmermann, “Mining usage expertise from version
archives,” in 5th International Working Conference on Mining Software
Repositories (MSR), 2008, pp. 121–124.

[9] L. Hattori and M. Lanza, “Mining the history of synchronous changes
to refine code ownership,” in 6th International Working Conference on
Mining Software Repositories (MSR), 2009, pp. 141–150.

[10] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-
knowledge model to capture source code familiarity,” in 32nd Interna-
tional Conference on Software Engineering (ICSE), 2010, pp. 385–394.

[11] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill, “Degree-of-
knowledge: modeling a developer’s knowledge of code,” ACM Trans-
actions on Software Engineering and Methodology, vol. 23, no. 2, pp.
14:1–14:42, 2014.

[12] K. Yamashita, S. McIntosh, Y. Kamei, A. E. Hassan, and N. Ubayashi,
“Revisiting the applicability of the pareto principle to core development
teams in open source software projects,” in 14th International Workshop
on Principles of Software Evolution (IWPSE 2015), 2015, pp. 46–55.

[13] G. Gousios, M. Pinzger, and A. V. Deursen, “An exploratory study
of the pull-based software development model,” in 36th International
conference on Software engineering (ICSE), 2014, pp. 345–355.

[14] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining GitHub,” in 11th
Working Conference on Mining Software Repositories (MSR), 2014, pp.
92–101.

[15] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in GitHub,” in 22nd Interna-
tional Symposium on Foundations of Software Engineering (FSE), 2014,
pp. 155–165.

[16] L. Passos, J. Padilla, T. Berger, S. Apel, K. Czarnecki, and M. T. Valente,
“Feature scattering in the large: a longitudinal study of Linux kernel
device drivers,” in 14th International Conference on Modularity, 2015,
pp. 81–92.

[17] S. Chacon and B. Straub, Pro Git, 2nd ed., ser. Expert’s voice in software
development. Apress, 2014.

[18] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Empirical
Software Engineering. Springer, 2007.

[19] A. Strauss and J. M. Corbin, Basics of Qualitative Research. SAGE,
1998.

[20] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[21] C. Hannebauer and V. Gruhn, “Algorithmic complexity of the truck
factor calculation,” in Product-Focused Software Process Improvement.
Springer, 2014, vol. 8892, pp. 119–133.

[22] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Assessing the bus
factor of Git repositories,” in 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 2015, pp. 499–503.

10

